Bibliography

1
BELLEGARDA, J., SILVERMAN, K., LENZO, K., AND ANDERSON, V.
Statistical prosodic modeling: from corpus design to parameter estimation.
IEEE Transactions on Speech and Audio Processing 9, 1 (2001), 52-66.
2
BROWMAN, C. P., AND GOLDSTEIN, L.
Tiers in articulatory phonology, with some implications for casual speech.
In Papers in Laboratory Phonology I: Between the Grammar and Physics of Speech, J. Kingston and M. Beckman, Eds. Cambridge University Press, 1990, pp. 341-376.
3
FLEMMING, E.
Phonetic optimization: Compromise in speech production.
In University of Maryland Working Papers in Linguistics (1997), vol. 5, pp. 72-91.
See http://www.stanford.edu/flemming/ .
4
FLEMMING, E.
Scalar and categorical phenomena in a unified model of phonetics and phonology.
Phonology 18 (2001), 7-44.
5
FUJISAKI, H.
Dynamic characteristics of voice fundamental frequency in speech and singing.
In The Production of Speech, P. F. MacNeilage, Ed. Springer-Verlag, 1983, pp. 39-55.
6
HOLLIEN, H.
In search of vocal frequency control mechanisms.
In Vocal Fold Physiology: Contemporary Research and Clinical Issues, D. M. Bless and J. H. Abbs, Eds. College-Hill Press, San Diego, CA, 1981, pp. 361-367.
7
KOCHANSKI, G. P., AND SHIH, C.
Stem-ML: Language independent prosody description.
In Proceedings of the 6th International Conference on Spoken Language Processing (Beijing, China, October 2000).
8
KOCHANSKI, G. P., AND SHIH, C.
Soft templates for prosody mark-up.
Accepted by Speech Communications (2002).
9
LEVENBERG, K.
A method for the solution of certain problems in least squares.
Quart. Applied Math. 2 (1944), 164-168.
10
MARQUARDT, D.
An algorithm for least-squares estimation of nonlinear parameters.
SIAM J. Applied Math 11 (1963), 431-441.
11
MCFARLAND, D. H., AND SMITH, A.
Effects of vocal task and respiratory phase on prephonatory chest-wall movements.
J. Speech and Hearing Research 35, 5 (1992), 971-982.
12
MONSEN, R. B., ENGEBRETSON, A. M., AND VEMULA, N. R.
Indirect assesment of the contribution of subglottal air pressure and vocal fold tension to changes in the fundamental frequency in English.
J. Acoust. Soc. Am. 64, 1 (1978), 65-80.
13
ÖHMAN, S.
Word and sentence intonation, a quantitative model.
Tech. rep., Department of Speech Communication, Royal Institute of Technology (KTH), 1967.
14
PRINCE, A., AND SMOLENSKY, P.
Optimality Theory: Constraint Interaction in Generative Grammar.
MIT Press, to be published.
Also available as Techinical Report 2 from the Center for Cognitive Science (RuCCS), Rutgers University, Busch Campus, New Brunswick, NJ 08903.
15
SHIH, C., AND KOCHANSKI, G. P.
Chinese tone modeling with Stem-ML.
In Proceedings of the sixth International Conference on Speech and Language Processing (Beijing, China, 2000).
16
STEVENS, K. N.
Acoustic Phonetics.
The MIT Press, 1998.
17
WHALEN, D., AND KINSELLA-SHAW, J. M.
Exploring the relationship of inspiration duration to utterance duration.
Phonetica 54 (1997), 138-152.
18
WILDER, C. N.
Chest wall preparation for phonation in female speakers.
In Vocal Fold Physiology: Comtemporary Research and Clinical Issues, D. M. Bless and J. H. Abbs, Eds. College-Hill Press, San Diego, CA, 1981, pp. 109-123.
ISBN 0-933014-87-2.
19
WINKWORTH, A. L., DAVIS, P. J., ADAMS, R. D., AND ELLIS, E.
Breathing patterns during spontaneous speech.
Journal of Speech and Hearing Research 38, 1 (1995), 124-144.
20
XU, Y., AND SUN, X. J.
How fast can we really change pitch? maximum speed of pitch change revisited.
In Proceedings of the Sixth International Conference on Spoken Language Processing (ICSLP) (Beijing, China, October 16-20 2000).



Greg Kochanski, Chilin Shih 2002-08-03