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Abstract

We propose a novel, noninvasive experiment that reliably shows the strength of glottal
oscillations. The Quasi-glottogram (QGG) signal is generated from a microphone array and an
electroglottogram signal.  It can be used to improve estimates of whether speech is voiced,
quantify partial voicing, and reduce the phoneme effect in speech signals. The technique is well
adapted to the generation of text-to-speech systems, as it allows an estimate of the glottal flow
during undisturbed, natural speech.  For prosody studies, it can be used to provide an estimate of
amplitude which is relatively unaffected by changes in phonemes, at least as reliable as standard
estimators of amplitude.
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1. Introduction

The source-filter model of speech production explains the acoustic speech signal as a
convolution of the time-varying glottal airflow (due to the vibrations of the vocal folds) with the
impulse response of the acoustic filter formed by the vocal tract.  A measurement of the glottal
airflow is clearly desirable: it would allow independent studies of the source and the filter.  In
particular, it would allow a determination of voicing, allowing measurements of the amplitude
and harmonic content of the glottal oscillations.  The source-filter model of speech is embedded
in speech coders, automatic speech recognition systems and speech synthesizers; better
understanding of the source and filter separately can lead to better algorithms.  For example,
speech synthesizers need reliable, precise indications of glottal oscillation because voiced speech
may be processed differently from unvoiced speech.   Human listeners will easily detect errors in
the database of a synthesizer where the speech has a voicing indication that is wrong for more
than 30 ms, a sensitivity that requires improvement in current techniques if one wants to create
synthesizers automatically without tedious manual checking.

Further, a relatively unexplored area of speech science is the study of prosody.  Prosody includes
all the acoustic properties of speech beyond the sequence of phonemes, such as the pitch, the
amplitude, and the spectral tilt of the sound.   Prosody is used to mark boundaries, to emphasize
words or phrases, to help control dialogs, among other functions.  However, quantitative
measurements of prosody are non-trivial, because other than pitch, all the candidate acoustic
features are strongly influenced by the phonemes: an emphatic ‘m’ may be quieter than a soft ‘a’.
Thus, to be able to study and understand prosody, there is a need for measurements of prosody
that are relatively independent of the particular phonemes, so that one can compare prosody of
different words.  Again, measurements of the glottal flow would be useful, because on one hand,
the glottal flow is much less dependent on the choice of phoneme than the far-field acoustic
signal is, and on the other hand because it can be related to physiological parameters like
subglottal pressure and muscle tensions.

Invasive estimates of the glottal flow are possible, using acoustically matched tubes [1,2], but
this interferes with lip and jaw movements.  This interference is fatal to applications which
require simultaneous recording of natural, undisturbed speech. One such application is the
recording for a text-to-speech-system (TTS) database. Most commercial TTS systems are built
by piecing together segments of real speech.  Natural, high quality recordings are a basic
requirement: but one also needs to automatically and reliably estimate acoustic properties of the
speech signals.  Other estimates of glottal parameters, such as intubation to measure subglottal
pressure [3], direct photography of the vocal folds [4,5], or photoglottography [6,7] to measure
the glottal open area are also invasive and incompatible with sensitive applications.
Plethysmography [8] can measure subglottal pressure, but is cumbersome, and the acoustic
properties of the box in which the subject sits need to be carefully considered in order to get
clean speech.  Finally, Electroglottography (EGG)  [9,10,11,12,13,14,15,16] is noninvasive, but
produces only an indication of vocal fold contact, and the folds can be contacting while the
glottis is partly open, or non-contacting when the glottis is nearly closed.  The EGG signal
doesn’t usefully measure the width of the glottal opening, and thus misses most of the
information in the source waveform.
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Historically, the glottal flow has been estimated by “inverse filtering.”  Inverse filtering is based
on first estimating the vocal tract transfer function from a microphone or anemometer signal,
inverting it, and using the inverted filter to remove the effect of the vocal tract [17].  If the
estimated transfer function is accurate, the result will be close to the actual glottal flow.
However, the problem is intrinsically indeterminate, as one is trying to estimate both a time
series of glottal flow and a time series of vocal tract parameters from a single input time series.
In practice, assumptions are made that the microphone signal is quasistationary, that the
spectrum of the glottal flow is simple near the vocal tract’s formant frequencies, that the vocal
tract can be modeled as an all-pole spectrum, and sometimes that the formant frequencies change
smoothly with time.   While the resulting algorithms work reasonably well, none of the
approximations are perfect, and the resulting estimate of the glottal flow is only approximate,
with ill-determined errors.

The goal of this study is to develop a new, noninvasive technique that allows an estimate of the
volume flow of air through the glottis, U, based on an array of microphones and an EGG signal.
This paper will first justify why such an algorithm is possible.  Second, it will lay out the details
of our algorithm.  Third, we test the algorithm.  Since we do not have invasive flow
measurements available for a direct comparison, we bring in two lines of indirect evidence to
show that the Quasiglottogram (QGG) signal is closer to U than the standard signals used for
voicing estimation.  The first test is qualitative: we compare the QGG’s behavior to other signals
in “difficult” regions of speech, and show that the QGG behaves well under conditions where
one or another of the standard signals misbehaves. The second test is quantitative, though
indirect: To prepare, we introduce a simple “toy” model of speech, and show that in that model,
the signals that lead to the least variable amplitude estimates are the signals that are closest to U.
We then show that the QGG signal allows a very steady estimation of amplitude, generally less
variable than the result of other standard linear estimators.  This provides evidence that the QGG
signal is close to U.

A good estimator for glottal flow should be noninvasive, linear, and should be related to the
actual glottal airflow through a time-invariant transfer function.  It should also distinguish
between voiced sounds and sounds generated in other constrictions of the vocal tract.  Linearity
helps simplify connecting the estimate of U  to physiologically important parameters like the
subglottal pressure and the glottal open area and it allows straightforward quantification of
partial voicing.  The output of the algorithm should be related to U via a time-invariant transfer
function, so that we can meaningfully compare signals at one time to signals at another.
Particularly, one would like to compare glottal flows between different phones.

We approach these goals by building a signal from linear combinations of several filtered
microphone signals.  We choose the linear combinations and filters to make the best possible
match to the EGG signal, which provides an instantaneous measurement of whether the vocal
folds are contacting or not, and thus gives some indication whether the glottis is open or closed.
We also use data from a microphone near the base of the throat to pick up a signal from the
subglottal cavities.  The subglottal cavities have an acoustic transfer function from the glottis
through the throat wall to an outside microphone that is relatively independent of time, as (unlike
the vocal tract) the trachea is not surrounded by muscles used to articulate speech.  The
dimensions of the trachea and bronchi are also largely unchanged during breathing, and even
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motions of the larynx are expected to lead to only modest changes in the acoustic resonances
[18,19] of the trachea.

The algorithm requires at least two microphones.  One to pick up the throat signal, and one for
sound from the vocal tract.   The throat signal contains a mixture of sound that propagated from
the glottis down through the trachea then through the skin of the throat, mixed with sound that
propagated from the glottis up through the vocal tract, then back down through free air to the
throat microphone.  The other microphones are used primarily to cancel out the component from
the vocal tract.  This cancellation results in a signal that is the glottal waveform, filtered by its
propagation through the neck.  We show that this signal is less variable than commercial inverse-
filtered signals, in the sense that the signal shows less phoneme-dependent variation.  This
stability is what one expects of the glottal waveform; it should be only weakly influenced by the
vocal tract configuration [20].

It is necessary to cancel out the sound from the vocal tract because we want an estimator of the
glottal flow, and we don’t want our measurement to be disturbed by the dramatic changes in the
transfer function of the vocal tract that occur during normal speech.  This is a different approach
from an inverse-filter estimator, which attempts to dynamically estimate and invert the vocal
tract transfer function: a nontrivial, multiplicative operation on one signal.  We look for a signal
which has a time-invariant relationship to the glottal flow via a linear operation on several
signals.

2. Experimental Apparatus

In the experiments described below, we mounted four Bruel and Kjaer type 4165 omnidirectional
microphones on the face guard of a hockey helmet. The microphones were mounted near the
nose (4 cm lateral from the end of the nose), to the side of the mouth (2 cm lateral of the corner
of the mouth), near the forehead (centered, 11 cm above nose level), and near the base of the
throat (on centerline, 2 cm from skin, 2 cm above the top of the sternum).  The microphones
were checked to be slightly outside breath streams, and were protected by 4 mm of windscreen
foam. In other experiments, we found that only the placement of the throat microphone was
critical: it should be placed as close as possible to where the trachea can be palpated (the fossa
jugularis), so long as the microphone does not collide with the subject during normal head
motions. The placement of the other microphones is not critical, and we have obtained similar
signals from a 6-microphone array (including cheek and back-of-the-head microphones), and a
3-microphone array (using a gradient microphone for the throat signal).

The EGG signals were obtained from a Portable Laryngograph [21].  The electrodes were placed
to maximize the signal strength for long vowels, in modal speech, over the normal range of 0f .

Data was digitized at 12 kHz per channel with an antialiasing filter. The microphone and EGG
signals are high-pass filtered at 40 Hz to reduce room noise and the large amplitude, slow
components of the EGG that correspond to motions of the larynx.  All inverse filtered signals
were produced by ESPS/waves [22].

In the examples that follow, we used Mandarin speech acquired from a female subject, a native
Mandarin speaker fluent in English. Because Mandarin is a tone language, Mandarin speakers
can conveniently control f0 movements. Therefore we expect that vocal folds vibration will be
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more repeatable, reducing unpredictable fluctuations in U.  The subject pushed a key for each
prompt, and Chinese characters were presented on a screen.  Speech began 0.72±0.1 seconds
after the prompt.

 The data presented in section 4 was taken from a random (e.g., selected for other purposes) set
of English vowels and words, read at normal volume in modal speech, along with some
unplanned spontaneous phrases.  The data for section 5 is a database of 979 utterances in the
form “Ta1 shuo1 X san1 tian1.” (“He says X for three days.”), where X ranges over a random
selection of syllables in all four tones.  Overall, f0 had a mean of 235 Hz and a standard deviation
of 26 Hz, with most of the variation on X.

Calibration utterances to train the algorithm (i.e., fit the filter coefficients), for both sections,
were a broad mixture of sounds.  We recorded 25 calibration utterances at the beginning of the
day’s recording, and another 25 at the end, 6 hours later.  Half were single-syllable English
words (e.g., “nap”).  One quarter were repeated fricatives, ‘p’, and ‘h’. The remainder were long
vowels, nasals, and voiced fricatives where f0 was swept through the subject’s comfortable pitch
range. Voiceless sounds are useful to force cancellation of the mouth signal and to check the
operation of the algorithm, because their U is nearly a steady flow. The f0 sweep sentences
provide voiced speech with the speaker’s full pitch range. It is useful when the calibration
utterances cover all the f0 range of the speech used in the experiments.  The calibration utterances
did, having range of f0 with mean 248 Hz and standard deviation 97 Hz.

The FIR filters used in the QGG algorithm had taps spaced over 13 milliseconds.

3. The algorithm

The overall structure of the algorithm is shown in Figure 1.  To explain the design of the
algorithm, we can consider a simplified form of the microphone array as shown in Figure 2: one
microphone, M, near the mouth, and another, T, at the base of the throat.  During voiced sounds,
the signals are excited by the flow, U, through the glottis.  The signal at T is made of two main
components, one traveling directly through the neck [23] (via a transfer function N), and the
other through the vocal tract (transfer function V) to the vicinity of M, then down through the air
(transfer function A) to T.  (Here, we treat these transfer functions as generic matrix
manipulations in any complete basis, not yet specializing to a time series, frequency
representation, or some intermediate basis, following [24].)  In this model, UVANT ⋅⋅+= )( .
We take UVM ⋅= , neglecting the small amount of sound coming through the neck.

We expect that N and A should be nearly independent of the phoneme being produced.  On the
other hand, V varies dramatically and systematically as a function of the phoneme.   We can
express this variation by writing vvV ~⋅+= α , where V depends on the phoneme only through
α , and 0=α  (the angle brackets denote an average over the corpus of speech). Because

human speech is the result of several independently controlled articulators, α is normally a
vector.   In other words, we decompose V into an average transfer function, v , and the variations
around the average.  Then, UvAUvANT ⋅⋅⋅+⋅⋅+= ~)( α .
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Hypothetically, if we had a reference signal, Q, which was derived from U via some time-
invariant transfer function, q, we could find a linear filter that would reproduce Q from the
microphone signals (note that we assume off-line processing, so our filters need not be causal).
The general form for that linear filter would be TcMcC TM ⋅+⋅= , and to find the filter

matrices (coefficients) Mc and Tc , we would minimize the difference between C and Q:

),(minarg, TMTM ccEcc = , where

Eq. 1 
2

)()(),( QCQCQCccE T
TM −=−⋅−=

is the sum of squared errors between our target signal Q and our reconstruction.

If 0=α , Eq. 1 is degenerate, and its solutions are all filter coefficients Mc and Tc  on a line

which we will call L, that goes through 01 =Mc , 1
1 )( −⋅+⋅= vANqcT  and 1

2
−⋅= vqcM ,

02 =Tc .    The first of these two solutions corresponds to using just one filter, on the throat

microphone to match Q, while ignoring M.  The second solution is the reverse: using just one
filter on the mouth microphone while ignoring N.  Points on L correspond to linear combinations
of these two filters, and all points on L are equally good solutions and match QC =  exactly,
assuming that the necessary inverses exist.  This derivation can be extended to allow white
additive noise in the microphones, in which case the necessary inverses always exist.  Results are
qualitiatively similar, although the derivation and results become substantially more complex.

If the speaker starts talking, instead of just vocalizing with a stable vocal tract, the transfer
functions will vary from phoneme to phoneme, and we will not be able to match Q perfectly at
every moment, so E will be positive.  Not every solution gets the same increment of error,
though.   Solutions that depend predominantly on V will fit worse and have larger errors than
solutions that depend predominantly on N, because V changes from phone to phone.  This
difference breaks the degeneracy and typically picks out a single best solution.  In general, the
best solution will use signals from all microphones, and it will provide a better approximation to
Q than could be obtained from any linear filter operating on any single microphone in the array.

If we assume that V varies slowly enough, we can write down the change in error due to the
difference between V at a given moment and the average of V (i.e., v ):

Eq. 2 
2~)( UvcAcE MT ⋅⋅⋅+⋅=∆ α ,

where the average (written as angle brackets) is taken over all phonemes in the corpus. The
change in error is always non-negative and is normally nonzero everywhere except on a
hyperplane we will call P, defined by Acc TM ⋅−= .   Not coincidentally, this relationship

between the filter coefficients is exactly what is needed to cancel out the part of the signal that
came from the mouth, leaving only the part that came through the throat wall.  The intersection
of L and P then specifies the best estimator for Q (the one that is least sensitive to changes in the
transfer functions).  These results generalize to arrays of more than two microphones.  They also
can be generalized to the case where all the transfer functions vary with time, though Eq. 1 and
Eq. 2 will change in detail.
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So, given a reference signal, we can build an estimator of the glottal airflow by using an array of
microphones, and finding the linear combination of filtered microphone signals that best matches
the reference signal.   The resulting signal is less variable than any signal derived by a linear
operator from a single microphone.  Loosely speaking, the best estimator is obtained by
canceling out the highly variable signal from the mouth microphone, and using the part of the
signal that did not propagate through the vocal tract.

In the real world, one doesn’t normally have a perfect reference signal, Q.  The best we can
obtain non-invasively is the EGG signal.  The EGG is related to U in a nonlinear and variable
manner, because the larynx moves up and down relative to the electrodes used to measure the
EGG.  Repeating the above analysis shows that the variability of EGG measurements are not
important, so long as changes in the EGG signal are not correlated with phonemes.   This is true,
by and large, as the larynx moves in response to pitch changes and inhalations, neither of which
are correlated with most phonemes in most languages.  Glottal stops and pharyngeal sounds are
an exception, but they are not particularly common, typically comprising just a few phonemes in
a language.

Nonlinearities in the relationship between U and the EGG signal are difficult to analyze
analytically.  We have investigated their effect empirically, in Sections 4 and 5.

3.1. Algorithm Introduction

We first build the data matrix, X, where each row contains the signal from one of the
microphones, and each column corresponds to one moment in time.  X is an n by m matrix when
there are n microphones, each digitized to produce m samples of audio.  The EGG signal is a
one by m matrix.

We then select a set of taps (i.e., taps on a delay line) for each microphone.   Physically, the
closure of the glottis is the cause of the acoustic signals: when it closes, a sound wave propagates
up the vocal tract and down the trachea, reaching the microphones roughly a millisecond later.  If
one tries to observe a glottal closure at time t, one will need to use microphone data from later
times, when the sound waves from the closure reach the microphones.  Thus, we use the taps to
build a finite impulse response (FIR) filter to predict the present EGG signal from future
microphone signals.

To select the span of the taps, we need to consider the purposes of the filter we are building.  It
needs to cancel out the mouth signal that is picked up by the throat microphone, and it needs to
match the impulse response of the remainder of the throat microphone signal to the EGG signal.

The taps span the range of delays beginning with the earliest propagation from the glottis to the
microphone in question, ending when the impulse response of the vocal tract goes below 1% of
its peak value.

Vocal tract formant bandwidths can be as small as 40 Hz [25,26] when the glottis is closed,
though in real speech a bandwidth of 80Hz is more realistic [27].  Such a bandwidth implies that
the vocal tract resonances will take about ms6)2(13 ≈⋅ Bπ  to decay.  Bandwidths for the
tracheal resonances are wider, 200-400Hz [28], and so are not the limiting factor for the window
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width in the time domain.  Matching the acoustic to the EGG signal requires a window length of
about 0/1 f , which can be slightly longer.  We choose the range of taps to cover the longer of

these times, and we use the same number of taps for every microphone.

One needs enough data to capture a wide range of speech conditions, especially speech with a
range of fundamental frequencies (f0).  The algorithm will not produce good estimates for speech
that has f0 outside the range of the training data in x.

 The QGG signal does have some imperfections.  It has a small response to fricatives and
plosives.  The primary source of that response is incomplete cancellation of the mouth acoustic
signal at the throat microphone.  The design of our microphone array allows the microphones to
move about 1 mm relative to the skull.  This small movement is expected to lead to 3% changes
in value of the transfer functions, which would make cancellation of the mouth signal impossible
to better than a 3% level.  It also does not estimate U directly, but estimates U times a transfer
function, where the transfer function depends on the subject and the experimental configuration.

 Note that we do not claim any absolute calibration for the QGG signal.  Because the QGG filter
coefficients involve the EGG signal, the QGG amplitude will differ from person to person and
session to session, depending on neck structure and the placement of the EGG electrodes.
However, the QGG signal depends on the EGG only through its average properties during the
calibration/training session.  So, when one is actually using the QGG (as opposed to calibrating
it), the EGG is entirely unused, and may be disconnected.  Therefore, factors that affect the EGG
signal during use (such as the momentary position of the larynx with respect to electrodes) will
have no effect on the QGG.

3.2. Implementation

We build a set of linear equations corresponding to the FIR filter that best predicts the EGG
signal, using straightforward least-squares linear prediction techniques29.  The predicted EGG
signal at each time is a linear combination of qn ⋅ values (q taps on each of n microphones).  To
start, we define the covariances between shifted signals from the ith and jth microphones:

Eq. 3 ∑ ⋅= −
t

tjtimji xx ,,
1

,, ααφ ,

where α  is the time shift between the ith and jth microphones (we neglect end effects, for
simplicity), and t indexes the time.  These covariances are estimated from the data, and contain
noise covariances.  Analogously, we will write j,*,αφ  for the covariances between the EGG signal

and the shifted microphone signals.  The filter coefficients that minimize the mean squared error
are then the solution to
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Eq. 4 j
i

iji c ,*,,,, ααα φφ =⋅∑ ,

which is a set of qn ⋅  linear equations.  We prepare to solve the equations by stacking the ic ,α

to make a single vector C, stacking j,*,αφ  to make a single vector P (of size qn ⋅  by 1), and

placing the elements ji,,αφ  into the corresponding places jinH ,+α to make a qn ⋅  by n  matrix.

We solve the resulting matrix equation, PHC = , with a singular value decomposition algorithm
to allow for degeneracies and near-degeneracies.  C can then be unpacked to yield the ic ,α , which

are the filter coefficients that give the best prediction of the EGG signal from the set of
microphone signals.

We can now calculate the QGG signal,

Eq. 5 ∑ ⋅= −
i

itit cxp
,

,,
]1[

α
αα

from the ic ,α  and microphone signals.  The prediction is not at all precise because the EGG signal

is a strongly nonlinear function of the glottal opening: it contains little information beyond the
simple fact of whether the vocal folds are touching or not.  It would be surprising indeed if one
could build a linear filter that would exactly match the EGG signal.

4. EGG vs. QGG for voicing estimation.

An engineering evaluation of the QGG signal for voicing estimation is beyond the scope of the
paper.  Instead, we will present cases that show that (at least under some conditions) the QGG
signal can provide a more reasonable estimate of the presence of voicing than either the EGG or
the inverse-filtered mouth signal.  This is the first, qualitative, test of the QGG.

The advantages of the QGG signal follow from its construction: because it is a linear function of
the pressure near the glottis, it is well behaved during startup and shutdown of the glottal
oscillator.  So, unlike the EGG, it may be able to quantify partial voicing, and mark onsets of
voicing precisely.  Because the QGG is constructed from a time-invariant filter operating on
acoustic signals, it may be more robust than algorithms based on an inverse filter (we do not
discuss manual adjustment of inverse filter coefficients here, as such techniques are impractical
for large speech corpora).  Any time the spectral estimation step of an inverse filter fails to
produce a good result, or any time the speech signal is not well represented by an all-poles
transfer function, one expects the inverse-filtered signal will not reflect the glottal state.   The
QGG doesn’t suffer from those problems.

 Figure 3 and Figure 5 show examples of speech signals where the glottal oscillation is starting
or stopping.  The figures show that the QGG signal can sometimes provide a much better
explanation of the acoustic signal than does the EGG signal.  Limitations of EGG signals have
previously been described elsewhere [30,31].
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In Figure 3, the envelope of the QGG signal tracks acoustic power (the mouth signal), while the
EGG signal shows an unnaturally sharp onset/ending.  If the glottal oscillation really stopped
with the EGG signal, one would have to assume a bandwidth for the first formant of only 5 Hz
for the acoustic signal to persist as long as it does, which is incompatible with the known width
[25,26,27] of vocal tract formants.  The vocal tract simply isn’t a good enough resonator for the
sound to persist 30 ms after the end of glottal oscillation.  Therefore, glottal oscillation must be
continuing at a lower level, but without showing up on the EGG.  Titze [32] and Stevens [33]
have discussed this kind of small oscillation.

If we consider the physical mechanisms of the glottal oscillation and the EGG measurement
process, this EGG failure is not surprising.  The EGG signal measures the electrical conductivity
across the glottis.  During the “closed” phase of the oscillation, the vocal folds are touching in
various degrees, and the conductivity provides a measure of how much they touch and how hard.
However, once the glottis opens, the current between the vocal folds drops to zero, because there
is an air gap between the folds.  It remains essentially zero, no matter how wide or narrow the air
gap.  Consequently, any glottal oscillation that doesn’t actually cause the vocal folds to touch
won’t change the electrical conductivity, and shouldn’t be expected to show up on an EGG
signal.  We see that here; it is a common effect, showing up in low-amplitude voiced speech.

Other observations can also be explained similarly, such as the events around 015.8≈t s in
Figure 3.  Imagine comparing two vowels, one uttered with amplitude just small enough so that
the glottal folds don’t collide, and the other uttered with slightly more amplitude so that the folds
do collide on each cycle.  In the two cases, the subglottal pressure is similar, and the average
open area will be similar, as will the open quotient.  Consequently, the total airflow per cycle
past the glottis will be quite similar.  If we consider a decomposition of the signal into a stack of
harmonics at f0, 2f0, 3f0, 4f0... the lowest harmonic will primarily measure the total air flow per
cycle, and will change only gently and continuously when the glottal folds begin to collide.

However, the higher harmonics do not behave smoothly.  Below the collision threshold, the
oscillation is close to a simple harmonic oscillator, perhaps with weak nonlinearities resulting
from the viscoelasticity of tissue and the geometry of the oscillator.  Above threshold, there is a
strong nonlinearity: when the vocal folds collide a simple harmonic oscillator model does not
apply at all, and large amounts of power suddenly start to be generated in harmonics above the
third.  This is the situation that is described by the two-mass model [34,35], which typically

gives a spectrum where the amplitude of the nth harmonic scales as 1−∝ nan , or a 6db/octave

slope.  The harmonics now suddenly carry a substantial fraction of the total acoustic energy.
Such a change can be seen in the spectra shown in Figure 4.

The effect is not confined to the low-amplitude tails of voiced sounds.  For example, in Figure 5,
an acoustic signal begins two periods before the first EGG activity.  Again, one must assume that
the vocal folds are oscillating but not yet completely closing.

Figure 6 shows a section of a low-amplitude, sustained ‘o’ as an extreme example where the
EGG fails to explain the acoustic signal.  Several times, the amplitude of the EGG signal jumps
up dramatically, then drops back down a few milliseconds later.  Little effect is seen in the
acoustic signal, other than an increase in the power of the higher harmonics.  Nor is any
substantial change seen in the QGG signal.  These glitches may result from a droplet of mucus
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intermittently forming an electrically conductive bridge between the vocal folds.  Alternatively,
we could be seeing an oscillation where the vocal folds come within a whisker of touching, and
some small perturbation briefly increased the amplitude or reduced the spacing just enough to
make them collide.  The noteworthy observation here is that the QGG signal is a much better
predictor of the acoustic signal than the EGG.

These problems we have displayed are not hard to find, occurring at these levels in 6 of 304
voiced syllables inspected.  Because the problems seem to be associated most with glottal
oscillations where the vocal folds do not contact, we expect that EGG problems should be much
more common in languages that make more extensive use of murmurs (i.e., a ’breathy’ voice
quality), most notably Hindi.  The inverse filtered signal also tends to behave badly for low
amplitude voicing or other conditions where the power in the higher harmonics is very low.
Among the displayed signals, the QGG provides signals which display a strong contrast between
voiced and unvoiced regions, and have most of their power in the fundamental to reduce the
likelihood of octave errors in any following pitch tracker.

5. QGG as a measure of amplitude/emphasis

The Quasi-glottogram signal is valuable for more than correcting voicing errors.  It also provides
an estimate of the amplitude of the oscillatory flow through the glottis.  We expect that this
amplitude will be a better predictor of prosodic emphasis and a better measure of the speech
effort being expended by the speaker than is the total acoustic power of the mouth signal or the
inverse filtered mouth signal or EGG.

Amplitude has been known to be a significant component of prosody since the 1950s
[36,37,38,39,40], and into more recent literature [41,42,43,44,45].  However, all these studies
have been severely limited by the large intrinsic variability of speech amplitude measurements.
The experimental designs (e.g., ANOVA analysis on p. 190 of [41]) invariably compare the
prosodic effect in question to the unpredictable variations.  Reducing this variability can be seen
to be just as good as having a larger effect to measure.  This is one value of the QGG: it allows a
cleaner, low variance amplitude measurement, and should lead to more conclusive experiments.

5.1. Model of amplitude variance

To justify our intuition that the QGG signal will allow better amplitude measurements, consider
a toy model of the speech apparatus: a glottal source that drives the vocal tract, which we model
as a time-varying filter.  Loosely speaking, the variability of the amplitude outside the mouth
comes from two sources: intrinsic variability in U, and changes in the coupling through the vocal
tract transfer function, V.  Since the two variances add, the variability of the mouth power will be
greater than the variability of glottal power.  Consequently, we expect that the best linear
estimators of the glottal source should have the lowest variability.  We can use this as a figure of
merit to compare algorithms: less variable estimators are better and probably closer to the glottal
signal.

We will work in a short-time Fourier transform basis to conveniently describe speech-like
signals.  Signals are then indexed with two parameters: a time index, t, which locates the
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transform’s window, and a frequency index, ω , for the low-resolution spectrum in the window.
In this toy model, the glottal source changes its amplitude but not its spectral shape:

)()(),( ωω gtftU ⋅= , where we assume that the amplitude, ( )tf , changes slowly compared

to structure in the glottal spectrum, )(ωg .  We can safely assume 1)(
2 =∑

ω
ωg  without

affecting the model, as the overall amplitude can go into )(tf .

Next, we can write a time- and frequency- dependent transfer function for the vocal tract:
))(,( th φω , where )(tφ  is the vocal tract configuration (roughly, the phone) at time t.  The

pressure outside the mouth is then ))(,()()(),( thgtfts φωωω ⋅⋅≈ , and we can sum over

frequency to get the RMS amplitude of the mouth signal: ))(()(),()( 2222 tztftsta φω
ω

⋅== ∑ ,

where ∑ ⋅=
ω

φωωφ 22 ),()()( hgz  shows how efficiently power is coupled from the glottal

source out through the mouth for a particular phone φ .

We can now take the log of the power to write

Eq. 6 ))(log())(log())(log( tztfta += .

As long as variations of the vocal tract are uncorrelated with changes in the larynx, the variances
of the two right hand terms add, and we can conclude that

))var(log())var(log())var(log( zfa += .  Since 0))var(log( >z ,

))var(log())var(log( fa > .  In other words, the amplitude outside the mouth is always (in this

toy model) more variable than the amplitude of U.  The same conclusion follows if you consider
h to include the vocal tract plus an arbitrary linear operator: thus any filtered version of the
mouth signal will still be more variable than U.

The limits to the assumption that  f and z are uncorrelated come from two sources:  First, the
speaker’s intentional muscle motions can have correlations between the glottis and the vocal
tract (e.g., a hypothetical language might specify that high vowels are always spoken in a pressed
voice).   Second, some vocal tract configurations with tight constrictions can change the glottal
waveform.  However, neither circumstance seems common.

As a concrete example of this, consider a vowel where 0f  matches the first formant frequency,

1f . Acoustic power will then be efficiently coupled from the glottis out the mouth, because a

peak of )(ωg  matches with a peak of ))(,( th φω , z  will be large, and the amplitude at the

mouth will therefore be large.   On the other hand, if 102
3 ff =  with the same amplitude of U,

the fundamental frequency will be below the first resonance of the vocal tract, z  will be small,
and the amplitude at the mouth will be small.   Comparing the two cases, we see that substantial
variance in amplitude can be generated as the sound wave propagates through different
configurations of the vocal tract.
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This toy model contains several loose assumptions and shouldn’t be taken too far, but it does
give important clues for finding good algorithms, since the mathematics remains valid if the
transfer function, h includes the behavior of the microphones and a linear signal processing
algorithm.  For example if h is time-invariant, var(log(z)) will be zero, and the variability of the
amplitude estimate, var(log(a)), will be as small as possible.  Conversely, if s is always close to
g, the transfer function must be near unity, so that var(log(z)) must be small and thus var(log(a))
will be as small as possible.  So, we expect that algorithms that are good glottal estimators will
give stable amplitude estimates and vice versa. Note that for further arguments, we do not
require any of the details of the toy model, merely this conclusion, which is independently
testable, and likely to be true independent of the model.

Purely pragmatic considerations will also lead us to the same figure of merit.  If one is studying
prosody, then any variation of amplitude that is a function of the phoneme should be considered
noise: it prevents one from comparing prosodies of different words.  Good comparisons are only
possible if the amplitude measure is independent of phoneme.  So, we would like to improve the
signal-to-noise ratio of prosody experiments by reducing the noise, which again means finding
an amplitude estimator that is less variable.

5.2. Comparison of QGG & acoustic power variance

 We conducted a second, quantitative test.  This test directly establishes the usefulness of the
QGG signal as a measure of amplitude prosody.   We also show that the QGG signal allows a
very steady estimation of amplitude, less variable than the result of other standard linear
estimators. Following the logic in Section 5.1, this test indirectly establishes that the QGG signal
is a reasonable estimator of a filtered version of U.

We used the database of 979 utterances in the form “Ta shuo X san tian.” , described above.  We
calculated the QGG for all the utterances, along with an inverse-filtered M, low-pass filtered M,
and the raw M.  The boundaries of the variable syllable (X) were hand-segmented, and an
algorithm (ESPS/waves get_f0) was run to find the two voiced regions on either side of the
segmented area, and also the voiced region inside X.  Four of the utterances were voiced through
between “ta” and “shuo” and were dropped.  We then calculated the mean power near the center
of the five voiced regions, using a cosine window.

Table I shows the standard deviation of log(power) for each combination of  region and signal.
In every case, the QGG signal is more reproducible than the others, yielding (on average) a
standard deviation 46% smaller than the corresponding low-pass filtered speech, 38% smaller
than unprocessed speech, and 20% less than the inverse filtered signal.  These improvements in
SNR are conservative limits, as the speech contains some intrinsic variability that cannot be
removed by signal processing.

Comparisons of cells in Table I have several implications.  First, one expects the variation of the
frame (regions 1, 2, 3 and 4) to be small, where we always have the same syllable in the same
position.  In contrast, the variation in the X region should be bigger, because the syllable identity
changes.  This is reflected in Table I, where the X region shows the largest variation under all
conditions.
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Why is the QGG variability not smaller in the X region, if it indeed removes the effect of
changes in the vocal tract?  It is not smaller because, unfortunately, the QGG is not an estimator
for U, but rather (see section 3) a filtered version of U, Uq ⋅ , where the filter, q, is time-

invariant but can vary as a function of frequency.  The QGG estimate can therefore vary with
the 0f  of the speech.

We tested this by choosing a subset of the data that all has similar 0f , and re-calculating the

standard deviation of region X. We chose all 260 syllables that have Mandarin tone 1.  This is a
high, level tone, which is the same tone that occurs in regions 1, 2, 3, and 4.  In this subset of the
data, the f0 trajectory is relatively flat in each syllable, as well as across the whole utterance.  The
results are displayed in column X’ of Table I.  The standard deviation of the amplitude of all the
signals is lower, but the QGG drops most dramatically.

One can also see both the pitch-dependence of the QGG and its relative insensitivity to the vocal
tract configuration in Figure 7.  This is a scatter plot of the mean 0f  of all syllables vs. the

measured amplitude of the QGG signal.  We used the same window (as defined above) to
calculate the mean 0f  as was used for the amplitude measurement.   Syllables with tone 1 are

seen as a tight cluster in the upper left corner.  That cluster spans the full range of phonemic
variation, covering all vowels in combination with a variety of consonants and glides.  The other
syllables in Mandarin (shown as dots) have either low pitch, or they are rising from or falling to
low pitch, thus they have an average pitch below that of tone 1.  There is a clear trend of
increasing amplitude measurement with increasing pitch, presumably at least partially as the
result of q.  One can empirically correct for this trend, bypassing the QGG signal through a
properly defined filter, if one knows how much of the effect is the result of q, and how much is
the result of the speaker’s glottal flow changing as a function of pitch.

While the QGG algorithm dramatically reduced the variation of Regions 1 and 2 (to around 10%
in table I), it was less successful in Regions 3 and 4.  This suggests that there is more inherent
variability in Regions 3 and 4, which may well be some carry-over from the pitch and phoneme
change in region X.  This larger inherent variation can also be seen for all the signals, although
not as clearly because the other algorithms don’t yield as reproducible an amplitude signal as the
QGG.

5.3. QGG for amplitude prosody

As a further test with the same database (Table II), we attempted to eliminate any changes in
amplitude by predicting the amplitude of each region in terms of the amplitudes of the other
regions.  Essentially, this normalizes the measured amplitudes to the rest of the utterance, and
would eliminate the effect of a uniform change in amplitude from utterance to utterance.  The
goal here is to reduce the variability deriving from the experimental subject (e.g., from changes
in the volume of inspired air) and focus more tightly on variations that result from the signal
processing.

 We fit a least-squares linear predictor to the logs of the amplitudes, e.g.,
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Eq. 7 K+⋅+⋅+= )log()log()ˆlog( 22110 AbAbbAX ,

and then measure the RMS size of the residual, )ˆlog()log( XX AA − .  Here, RA  is the amplitude

of the thR  region (a RMS average of the signal inside a cosine window), and Â  is the predicted
amplitude, based on the other regions.  The predictor is a five-parameter linear fit, and we fit
separate predictors for regions 1, 2, X’, 3, and 4.  Again, the QGG leads to a nicely small
variance: it has predictable amplitude.  Surprisingly enough, the low-pass filtered signal is
comparably predictable, even though it’s performance before prediction (Table I) is quite poor.

The most important terms are generally those that predict A3 in terms of A4 and vice-versa.  After
prediction, the frame regions on both sides of X have similar variabilities, approximately 8% for
the QGG signal.  This remainder seems intrinsic to the speaker.  The excess variation in regions
3 and 4 is gone, even though the variation in regions 1 and 2 is practically unchanged.  This
suggests that amplitude variations in X, which are driven by phoneme and f0 changes, carry
forward into the following syllables.

Because region X’ contains a diverse set of different syllables while the frame regions (regions 1,
2, 3, 4) always have the same syllable in the same position, we expect more variability in the
amplitude of X’.  Tables II shows this.  However, changing syllables only disturbs QGG
amplitude measurements by 11% (beyond the intrinsic 8%), so long as the pitch is reasonably
stable.

6. Summary

We have shown that the QGG algorithm can produce a useful, noninvasive estimate of the glottal
flow.  When used to analyze speech, it can be well behaved under conditions where EGG and
inverse-filtered signals make gross voicing errors.  It also yields substantially more stable
amplitude measurements than other techniques.  The QGG algorithm should find applications in
studies of the amplitude part of prosody.  We also see applications in text-to-speech systems,
where there is a need for reliable automatic processing of speech data, and possibly in medical
screening or diagnostics of voice disorders.

We acknowledge Robert Kubli and Gary Elko for equipment and advice, Mohan Sondhi and
Joseph Hall for discussions and Ronald J. Baken and three reviewers for substantial comments.
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Tables

Fractional standard
deviation of amplitude

Region 1
ta

Region 2
shuo

X
X

X’
(tone 1
only)

Region 3
san

Region 4
tian

Raw 0.22 0.16 0.48 0.32 0.31 0.29

Low-pass Filtered 0.29 0.23 0.42 0.34 0.32 0.35

Inverse Filtered 0.14 0.14 0.42 0.24 0.22 0.24

QGG 0.09 0.09 0.37 0.16 0.19 0.20

Table I: Variability of speech amplitude, after processing by four algorithms.  Region X is the

variable syllable, and shows larger variability because the amplitude is a function of the

phoneme in X.
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Fractional standard
deviation of amplitude, after
linear prediction.

Regions 1
& 2
ta shuo

X’
(tone 1
only)

Regions
3 & 4
san tian

Raw 0.16 0.32 0.11

Low-pass Filtered 0.09 0.16 0.06

Inverse Filtered 0.14 0.23 0.10

QGG 0.08 0.14 0.09

Table II : Unpredictable variability of speech amplitude, after processing by four algorithms.
Here, we use the subset of the data where X has tone 1 (a high level tone), so that the pitch
matches regions 1, 2, 3, 4.  The amplitude in each region was predicted in terms of the other four
regions; the table shows the remainders.
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Figures
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Figure 1. Diagram of the data and signal flow in the computation of the QGG.
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Figure 2. Schematic of microphone placement and signal paths.
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Figure 3. Comparisons of estimators of the glottal waveform.  The signal is the off-glide [aι] in “high”.  The EGG stops more than 30ms before
the end of the glottal oscillation.
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Figure 4. LPC spectra (16 ms windows, from AR(14) model) on either side of 8.015 s in Figure 3.  The think, black curve is before 8.015s,
when the glottal folds are colliding, and the wide, grey curve is after.  The fundamental (225Hz) is essentially unchanged in amplitude, but the
power in the harmonics drops by about 10 dB.
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Figure 5. Beginning of the word ‘mosey’, at normal amplitude.  Note tat the EGG signal starts late.  Displayed as in Figure 3.
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Figure 6. The middle of sustained low amplitude ‘o’ phonation showing major EGG changes (bottom) without large changes in the speech

signal (top).  The various signals are labeled.
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Figure 7. Amplitude measurement vs. mean pitch of a syllable for QGG signal.

Syllables with tone 1 (used in column X’ of Table I and Table II) are shown as
‘x’.  Other tones are shown as dots.  In this plot, the pitch-dependencies (from one
tone to another) are larger than the dependence on the syllable (within the tone 1
syllables).
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