Hierarchical Structure and Word Strength Prediction of Mandarin Prosody

Greg Kochanski, Chilin Shih, Hongyan Jing

Bell Laboratories, Lucent Technologies
{gpk, cl s, hjing}@ esear ch. bel | -1 abs. com

Abstract

We use Stem-ML to build an automatic learning system for
Mandarin prosody that allows us to make quantitative measure-
ments of prosodic strengths. Stem-ML is a phenomenological
model of the muscle dynamics and planning process that con-
trols the tension of the vocal folds. Because Stem-ML describes
the interactions between nearby tones or accents, we were able
to use a highly constrained model with only one accent template
for each lexical tone category, and a single prosodic strength per
word. The model accurately reproduces the intonation of the
speaker, capturing 87% of the variance of fo. The result reveals
strong alternating metrical patterns in words, and shows that the
speaker uses word strength to mark a hierarchy of boundaries.

1. Introduction

Intonation production has generally been considered a two-step
process: an accent or tone class is predicted from available in-
formation, and then the accent is used to generate fo as a func-
tion of time. Historically, most attention has been paid to the
first, high level, step of the process. We here show that by fo-
cusing on fo generation, one can build a model that starts with
acoustic data and reaches far enough up to predict directly from
linguistic concepts.

Specifically, we present a model of Mandarin Chinese into-
nation that makes quantitative fo predictions, in terms of the
lexical tones and the prosodic strength of each word. The
model is able to accurately reproduce fo in continuous Man-
darin speech, with a 13 Hz RMS error. We fit this model to
acoustic data and show that the strengths, tone shapes, and met-
rical patterns of words that result can be associated with linguis-
tic concepts.

Further, we will show here that parameters trained on one
corpus (with a properly designed model) will match equivalent
parameters trained on another corpus, and also to linguistic ex-
pectations. We see effects correlated with the part of speech
of words, and with the beginning and ending of the sentence,
clause, phrase, and word levels of the linguistic hierarchy.

The automatic fitting is done by way of Stem-ML tags [1].
We parameterize a set of tags, then find the parameter values
that accurately reproduce a training corpus.

2. Chinese Tones

Tonal languages, such as Chinese, use variations in pitch to dis-
tinguish otherwise identical syllables. Mandarin Chinese has
four lexical tones with distinctive shapes: high level (tone 1),
rising (2), low (3), and high falling (4). The syllable ma means
mother with a high level tone but horse with a low tone. Thus,
in a text-to-speech (TTS) svstem. agood pitch prediction is im-

Tone 3
Tone 4
E 1 3 4 4 t 4
o *
*
FO { * B *** *
* * i

8 B ** *** [ ****
N K & * ***

i ****‘****** Fak

* = Data
S 11 fan ying su du
-
Time (10 ms) 20 40 60

Figure 1: Tones vs. realization. The upper panels show shapes
of tones 3 and 4 taken in a neutral environment and the lower
panel shows the realization of an actual sentence containing
those tones. The grey curves show the templates, and the black
curve shows the fo vs. time data.

neutral tone, or tone 0, which refers to special syllables with
no lexical tone assignment. The pitch values of such syllables
depends primarily on the tone shape of the preceding syllable.

Superficially, the modeling of Chinese tones seems straight-
forward. One might concatenate lexical tones to generate con-
tinuous speech. The challenge is that the realized fo contour
sometimes bears little obvious relationship to the concatenation
of the tones. Figure 1 shows a Mandarin phrase fan3 ying4 su4
du4 (“reaction time™), along with the tones from which it is con-
structed [2]. The last three syllables are all recognized as tone
4 by native speakers, but have drastically different fo contours.
Our model explains these changes of shape.

We explain the phenomenon displayed in Figure 1 as a
natural consequence of articulatory constraints interacting with
prosodic strengths. These severely distorted tone shapes occur
when the shape of a weak tone is contradictory to the trajectory
defined by strong neighbors. In those cases the weak tone ac-
commodates the shapes of neighboring strong tones to maintain
smooth surface f, contours.

Our model of Chinese intonation starts with the concatena-
tion of lexically determined tonal templates. From these, we
calculate fo at each time as a function of the nearby templates
and their prosodic strengths.

Assuming that the lexical tone is known, the task of learn-
ing the Chinese prosodv descrintion aiven surface fo curves



3. Modeling Intonation

We build our model for Mandarin on top of Stem-ML [1], be-
cause it captures several desirable properties. A positive fea-
ture of Stem-ML is that the representation is understandable,
adjustable, and can be transported from one situation to another.

Unlike most engineering approaches, one can generate ac-
ceptable speech by using the templates of one speaker with pa-
rameters from another[2], where tone templates from a female
speaker were used as part of a model to predict a male speaker’s
fo contours. Unlike some descriptive models, we predict nu-
merical fo values, and so our model is subject to quantitative
test, and can be extended to testing linguistic theories. Few
other approaches to intonation have these properties.

Stem-ML introduces several ideas into intonation model-
ing:

e e assume that people plan their utterances several syl-

lables in advance,

e we assume that people produce speech that is optimized
to meet their needs,

o we apply a physically reasonable model for the dynamics
of the muscles that control pitch [3], and

e we introduce a linguistically reasonable concept of a
strength that is associated with each syllable.

Pre-planning in speech was first shown in terms of the con-
trol of inhaled air volume [4, 5]: people will inhale more deeply
when confronted with longer phrases. This fact implies that at
least a rough plan for the utterance has been constructed about
500 ms before speech begins. As another example, Figure 8 in
Bellegarda et al. [6] shows that in an upwards pitch motion, the
rate of the motion is reduced as the motion becomes longer, pre-
sumably to avoid running above the speaker’s comfortable pitch
range. We take this as evidence for pre-planning of fo over a
1.5s range, at least in practiced, laboratory speech.

Next, we assume that speech is optimized for the speaker’s
purposes. A speaker has the opportunity to practice and opti-
mize all the common 3-tone or perhaps 4-tone sequences, even
if one assumes that each tone needs to be practiced at several
distinct strength levels.

The question then arises, “optimal in what sense?” We
propose that optimality be defined by a balance between the
ability to communicate accurately and the effort required to
communicate[1]. Specifically that the optimal pitch curve is the
one that minimizes the sum of effort plus a scaled error term.
Certainly, when we speak, we wish to be understood, so the
speaker must consider the error rate on the speech channel to
the listener. Likewise, much of what we do physically is done
smoothly, with minimum muscular energy expenditure, so min-
imizing effort in speech is also a plausible goal.

The error term behaves like a communications error rate: it
is zero if the prosody exactly matches an ideal tone template,
and it increases as the prosody deviates from the template. The
choice of template encodes the lexical information carried by
the tones. The speaker tries to minimize the deviation, because
if it becomes large, the speaker will expect the listener to mis-
classify the tone and possibly misinterpret the utterance.

The effort expended in speech can be approximated from
knowledge about muscle dynamics [7]. Qualitatively, our effort
term behaves like the physiological effort: it is zero if muscles
are stationarv in a neutral position. and increases as motions

related to muscle tensions. There must then be smooth and pre-
dictable connections between neighboring values of f, because
muscles cannot discontinuously change position. Most muscles
cannot respond faster than 150ms, a time which is compara-
ble to the duration of a syllable, so we expect the intonation of
neighboring syllables to affect each other. Because our model
derives a smooth f, contour from muscle dynamics, our model
is an extension of those of [8, 9, 10].

Effort is ultimately measured in physical units, while the
communication error probability is dimensionless, so a scale
factor is needed to make the two compatible for addition. This
scale factor varies from syllable to syllable, and we identify it
with the linguistic strength, or importance of each syllable. If a
syllable’s strength is large, the Stem-ML optimal pitch contour
will closely approximate the tone’s template, and the commu-
nication error probability will be small. In other words, a large
strength indicates that the speaker is willing to expend the effort
to produce precise intonation. On the other hand, if the syllable
is unimportant and its strength is small, the produced pitch will
be controlled by other factors: neighboring syllables and ease of
production. The listener then may not be able to reliably iden-
tify the correct tone on that syllable. Presumably, the listener
either can infer the tone from the surrounding context or he/she
doesn’t care if the listener misidentifies the tone.

We then write simple approximations to the effort and error
terms, so that the model can be solved efficiently as a set of
linear equations.

4. Experiment
4.1. Data Collection

The corpus was obtained from a male native Mandarin speaker
reading sentences from newspaper articles, selected for broad
coverage of prosodic factors. We fit two subsets (10 sentences
each, 347 and 390 syllables), randomly chosen from the cor-
pus. The speaking rate was 4 + 1.4 syllables per second, with
a phrase duration of 1.2 £ 0.7s. We define phrase as speech
materials separated by a pause.

Tones were identified by automatic text analysis, and
checked by two native speakers. Neutral tones were manually
identified. Phone, syllable, and phrase boundaries were hand-
segmented, based on acoustic data.

We computed fo with an automatic pitch tracker, then
cleaned the data by hand, primarily to repair regions where the
track was an octave off. If uncorrected, the octave errors would
have doubled the ultimate error of the fit, and systematically
distorted tone shapes.

Because word boundaries are not marked in Chinese text,
different native speakers can assign word boundaries differently.
Even so, the concept of a word is present, and is reflected in
the prosody. We obtained word boundaries independently from
three native Mandarin speakers: A, J, and S (J and S are au-
thors). All three had generally consistent segmentation of the
text into words. Pairwise comparison indicates that J and S have
the highest level of agreement: J identified 395 word bound-
aries, S identified 370 boundaries, 99% of which were also iden-
tified by J. A identified 359 word boundaries, of which 98%
agree with J’s boundaries and 92% agree with S’s boundaries.

Most disagreements were related to the granularity of seg-
mentation: whether longer units were treated as single words
or multiole words. and whether neutral tone svllables were at-



mented more than one way. A had the longest words, 2.04 syl-
lables on average. J and S divided words at a finer granularity:
S’s words averaged 1.98 syllables, and J’s words averaged 1.86
syllables per word. One labeler (A) consistently cliticized neu-
tral tone syllables to the preceding word, while the other two
labelers rarely did so.

We also created a random word segmentation (called “R”).
The random segmentation provides a check that the metrical
patterns we found are indeed significant.

4.2. Optimization

The Stem-ML model is built by placing tags on syllables, with
adjustable parameters defining the tag shapes and positions (de-
tails below). We built several different models, focusing on
models with one parameter (prosodic strength) for each word,
plus a set of 36, 39, or 42 shared parameters. The models dis-
cussed here have between 210 and 246 free parameters, or an
average of 0.6 parameters per syllable. The parameters that de-
fine the strength of words correlated only with a few neighbors,
but the core of shared parameters are correlated with everything.

The algorithm obtains the parameters’s values by minimiz-
ing the RMS frequency difference between the data and the
model. Unvoiced regions were excluded. We fit separately one
the two subsets, to allow comparisons.

We used a Levenberg-Marquardt algorithm[11, 12] with nu-
merical differentiation to find the parameters that give the best
fit. The algorithm requires about 30 steps before the RMS error
and parameters stabilize.

Levenberg-Marquardt, like many optimization algorithms,
can become trapped in a local minimum of x2, and may miss the
global optimum. If we start the optimization with parameters
randomly chosen from “reasonable” ranges, it will converge to
what we believe to be the global minimum in about 1 in 4 tries.
Consequently, we believe there are only a small number of min-
ima. The global minimum seems to be characterized by values
of adroop < 1 (adroop is a Stem-ML parameter), and its x>
is often 10% smaller than the next best minimum. Convergence
to the global minimum seems fairly reliable if an optimization
is started with values of the shared parameters taken from a pre-
vious successful optimization, even if the model or data subset
differ, and even if the strengths are initialized randomly.

4.3. Mandarin-specific Model

Our model for Mandarin is a more predictive, stronger model
than bare Stem-ML[13], and is stronger even than that of [14].

The model consists of a Stem-ML stress tag on each syl-
lable. We assume that each of the five lexical tone classes is
described by one template. A template is defined by 5 (2 for
neutral tones) pitch values, spaced across its scope. It is merely
stretched (in time) and scaled (changing its pitch range) to de-
scribe all syllables which have that tone. Each tone class has a
Stem-ML type parameter. Tone classes also have an atype pa-
rameter, which controls how the template scaling depends on
each syllable’s strength. The pitch excursions of the template
are scaled by a factor atype - s;'“*¥P¢! before the Stem-ML
tag is generated, so that if |atype| > 1, the pitch range of the
generated Stem-ML tag will change a lot for a small change in
strength, while if |atype| < 1, the pitch range of the tag will be
relatively independent of strength.

We give each word a strength parameter, S,, and derive
etrenathe for each <vllabhle via

where s,,,; is the strength of the ith syllable of word w, My ; is

the metrical strength of the ¢*" position in a word of L syllables,
and L(w) is the length of word w. These word strengths, S.,
are the only place in our model where linguistic information can
influence the f, contour, beyond selection of the lexical tone.

There are several parameters that are shared by all syllables.
Two parameters describe the scope of templates: ctrshift is the
offset of the template’s center from the syllable’s center, and
wscale sets the length of the template relative to the syllable.
Phrases are described by a straight-line phrase curve:

p(t)=P-L—(D-L%-t, @

where t is time, p(t) is the phrase curve, and L is the length of
the phrase (in seconds). All phrase curves share three parame-
ters: D, the declination rate; d, the dependence of the declina-
tion on the sentence length; and P, which tells how the initial
height of the phrase curve depends on sentence length. To com-
plete the model, We used Stem-ML step_to tags to implement
the phrase curve, and phrase tags were placed on phrase bound-
aries. Four other Stem-ML parameters control overall proper-
ties: adroop, add, smooth, and base.

We created and fit 24 different models to the data in a fac-
torial design. We used two subsets of the corpus times the four
different word segmentations (A, J, S, R) times three different
parameterizations. We refer to the three parameterizations as
'w’, "'WAY, and "wWAT’. These form a nested set of models with a
decreasing number of parameters. In the *w’ parameterization,
each tone class has its own atype and type parameters: we allow
tone templates to scale differently as the strength increases, and
we allow some tones to be defined by their shape while others
are defined by their position relative to the phrase curve. In the
WA’ parameterization, we force all tone classes to share one
atype parameter, so that all tone templates scale with the same
function of strength. Finally, in the "wAT’ parameterization, we
force all tones to share the type parameter, so all tone classes ex-
ercise the same trade-off between control of shape and control
of average pitch.

5. Discussion
5.1. Results of Fit

Overall, our word-based models fit the data with a 13 Hz RMS
error, approximately 1.5 semi-tones. In Figure 2, we show a
typical phrase, and in Figure 3, the the phrase containing the
worst-fit pair of syllables in the worst model. Generally, the
worst-fitting syllables tend to be the ones with the largest and
fastest pitch excursions. These are conditions where Stem-ML’s
approximation to muscle dynamics may break down, or where
the simple approximation that we use to estimate the error be-
tween templates and the realized pitch curve may be furthest
from the actual perceptual metric.

These models explain 87% of the variance of the data, and
much of the rest may be explainable by phoneme-dependent
segmental effects [15, 16]. Thus, essentially all the prosodic
information in the fo contour must be captured by the parame-
ters we obtain from the fits. Of the parameters, only the word
strengths have localized effects so that only they can capture lo-
calized prosodic features like emphasis, focus, and marking of
sentence structure. We expect, then, that the word strengths
resulting from the Stem-ML analysis are nearly a complete
descrintion of Mandarin prosodv. The rest of the paper will
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Figure 2: Typical fit (solid) vs. data (dots), for model subsetl1-
J-A. Syllable centers are marked with vertical dashed lines.
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Figure 3: Phrase containing the worst-fit pair of syllables in the
worst model (subset2-S-AT). Displayed as above.

We can show that the strength values that we obtain are ro-
bust against small changes in the assumptions that define the
model. For example, Figure 4 shows a plot of syllable strengths
obtained for the first subset with the S-wA model, plotted
against strengths obtained from the J-wAT model. Despite the
different word segmentations and the different sets of shared pa-
rameters the strength values are quite consistent. Comparisons
between different models using the same segmentation are even
closer. All the values fit on a narrow band about a smooth curve
that maps the strength from one fit to the other. This mapping
summarizes differences of shared parameters (most importantly
atype) among the fits.

The strength values that are least reproducible are single
syllable words, especially single syllable neutral tones.

5.2. Analysis of Parameters

For Stem-ML to be a model of a language, instead of just a
scheme for efficiently coding fo contours, we should be able
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Figure 5: Modeled shapes of isolated tones. The shapes match
standard descriptions, and interact to reproduce continuous
speech. The two dashed vertical bars mark the syllable bound-
aries, and dots mark the boundaries of the tone’s template in
each of the 24 models. Each tone was calculated with a strength
set to the median of all the strengths in the model.

to correlate the results of the fit with linguistically important
features. In the following sections, we will discuss the results
of the fit and see how they correlate with linguistic expectations.

Our phrase curve is Equation 2: simple linear declination.
We see no evidence that the phrase curve is important, and no
systematic declination. Neither P = —4(3) Hz.s™! nor D =
0(4) Hz-s™* is very large, and neither is substantially different
from zero (error bars are shown in parentheses, and are derived
from the differences between models).

In our model of Mandarin, a positive D would correspond
to a systematic decrease in fo during a phrase. This is distin-
guishable from a systematic decrease in strength, which would
cause the magnitude of fo swings to become smaller as the
phrase progresses.

5.3. Analysis of Tone Shapes

First, the fitted scope of the templates is close to a syllable. The
best fit templates are just 15(5)% shorter than their syllable, and
their centers are offset by 18(8)% after the center of the syllable.
This matches well with the intuition that tones are associated
with syllables (but see [17]).

Figure 5 shows the shapes of the four main Mandarin tones
in isolation, calculated for each of our 24 models. The tone
shapes are consistent among different models, and across sub-
sets. Overall, the shapes match standard descriptions of Man-
darin tones. The symmetry between tones 1 and 3 and tones 2
and 4 is striking, and was in no way imposed by the analysis
procedure. The four tones appear to have evolved to be nearly
as different as possible.

5.4. Analysis of Metrical Patterns

The RMS error from these word-based models, 13 Hz, com-
pares well with the 12 Hz RMS error we obtain from similar
models[18] (with nearly twice as many parameters) that allow
the strength of each syllable to vary independently, and do not
impose a metrical pattern. Clearly, the metrical patterns in the
words are successful at capturing much of the strength variation
from syllable to syllable.

Metrical structures in words are also apparent in the fitted
strenaths. Fiaure 6 shows a tree diaaram of the metrical patterns
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Figure 6: Metrical patterns for the J and S segmentations of 4, 3,
and 2 syllable words. The words are plotted as trees, where the
height of the ;*® leaf is proportional to the metrical strength of
the 5*® syllable: log(My ;) - atype'/?. Differences of log(M)
among leaves and nodes are shown numerically, with the paren-
thesized number showing the uncertainty in the last digit, as de-
termined from the scatter among different models. The patterns
for four syllable words have larger errors, as they are rare: they
are drawn with double arrows to display the range of fitted so-
lutions.
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Figure 7: Metrical patterns for random word segmentation,
plotted as above. As expected, the residual patterns are weak
and inconsistent.

does not yield a strong metrical pattern, because there is no con-
sistent relationship between the spoken words and the random
model. Further, the R-segmentations are not as good of a fit
to the data: the x2 for R-segmentations are 11% to 21% above
the corresponding models with real (A, J, or S) segmentations.
This change in x? is substantial: at least an order of magnitude
larger than necessary for 99% significance, even if one makes
allowance for correlations among the fo measurements.

All the real segmentations (A, J, S), show a clear strong-
weak pattern for two syllable words. This means that the initial
syllable’s tone is realized more precisely, and the fo swings will
tend to be larger. Although the details are strongly dependent
on the circumstances, our results indicate that RMS swings on
the first syllable should be 30% larger than the second sylla-
ble. While it has been generally expected that Mandarin words
would show a consistent metrical pattern, previous expectations
tended more to a weak-strong pattern, based primarily on evi-
dence from duration and perceptual judgments [19].

In the A, J, and S segmentations, three-syllable words are
predominantly left-branching. Because of this, we applied the
same metrical pattern to all three-syllable words, and did not
attempt to see if words with different internal structure had dif-
ferent metrical patterns. Again, we see strong-weak patterns
at both levels of the metrical hierarchy, though the patterns are
weaker than the two-syllable case.

All of the four-syllable words could be broken up into pairs
of two-syllable words. We know this from comparison of the
J and S segmentations, where the primary difference was just
such a splitting and from plausibility judgments of the labelers.
Consequently, we adopted the metrical tree shown in Figure 6.
Expressed on that tree, we again get strong-weak patterns at
both levels.
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Figure 9: Correlation between strength and word positions.
Each box shows the range of the data (the shaded region ex-
tends from the 25" and 75" percentiles), the median (white
stripe in the box), and outlying points (brackets on the border).

In Figure 8, we show the metrical trees from the A-
segmentation. While the patterns differ in detail, because of
A’s tendency to attach particles to words, the pattern is similar
to the J and S segmentations.

Our results are consistent with the alternating rhythmic
stress patterns in Liberman and Prince [20].

5.5. Analysis of Word Strengths

The strengths that result from the above fitting process can be
correlated with linguistically important features. We considered
three features: the number of syllables in the word, the posi-
tion of the word in the utterance, and the part of speech of the
word, and fit the strengths with a trimmed linear regression[21]
to separate out the effects of the different factors. We then ran
this regression on our models, and plotted the coefficients of the
factors. We found that:

(1) Words at the beginning of a sentence, clause, or
phrase have greater strengths than words at the final po-
sitions. Figure 9 shows the regression coefficients at different
positions. We define a sentence as a grammatical utterance that
is marked with a period at the end, a clause as a subset of a sen-
tence that is marked by a comma, and a phrase as a group of
words that are separated by pause.

The hierarchy of linguistic units is displayed with strengths
that increase with the size of the unit. Note that the zero line
corresponds to the average of words that are not at a boundary,
and that this line neatly divides the initial words of units from
the final words of the units. These results are consistent with
expectations [22].

(2) Nouns and adverbs typically have more strength
than words of other parts of speech, and particles have the
lowest strengths. Figure 10 shows the regression coefficients
for different part of speech. As we can see, adverbs on average
have a greater strength than words of other part of speeches. The
strengths for nouns, verbs, and conjunctions are slightly weaker
than that for adverbs and their strengths are close to each other.
In contrast, the strength for particles (e.g., neutral tones) are
much weaker than that for other parts of speech.

(3) Words with more syllables have greater strength
than words with smaller number of syllables. Figure 11
shows the regression coefficients for strengths for words of dif-
ferent lengths. It indicates that 3-syllable and 4-syllable words
have a larger strength value than 2-syllable words, and that
multi-svllable words are stronaer than 1-svllable words (the 1-
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Figure 11: Correlation between strength and the number of syl-
lables in a word.

the median absolute deviation by 17%, which (if the strength
distribution were Gaussian), would correspond to Pearson’s
r = 0.31. We use robust estimators like a trimmed regression
because the distribution of strengths has about 2% of outliers.

The correlations between strength in our Stem-ML models
and the above linguistic features suggest that the strengths in-
deed represent the prosody importance of syllables and words.
On one hand, we can use the strengths from Stem-ML models
to test linguistic theories; on the other hand, we can use features
such as position, part of speech, and number of syllable in word
to predict the strength of a word, and thus improve prediction
of fo.

6. Conclusion

We have used Stem-ML to build a model of continuous Man-
darin speech that connects the acoustic level to text analysis re-
sults (part-of-speech information, and word, phrase, clause, and
sentence boundaries). When fit to a corpus, the model shows
that prosody is used in a consistent way to mark divisions in
the text: sentences, clauses, phrases, and words all start strong
and end weak. Our prosodic measurements also show a useful
correlation with word length and the part of speech of words.
The simplicity and compactness with which one
can describe Mandarin using this representation sug-
gests that it captures some important aspects of hu-
man behavior during speech. For more information, see
http://www.bell-labs.com/project/tts/stem.html .
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