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This paper describes a novel prosody generation model.  We intend it to
broadly support many linguistic theories and multiple languages, for the
model imposes no restriction on accent categories and shapes.  This
capability is crucial to the next-generation of Text-to-Speech systems that
will need to synthesize intonation variations for different speech acts,
emotions, and styles of speech. The system supports mark-up tags that are
mathematically defined and generate f0 deterministically. Underlying the
tags is an articulatory model of accent interaction which balances
physiological and communication constraints. We specify the model by
way of an algorithm for calculating the pitch, and by way of examples.
The model allows localized, linguistically reasonable tags, and is suitable
for a data-driven fitting process.
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1. Introduction

The demands of interactive approaches to TTS require more freedom to express prosody
than current systems allow.   Most current TTS systems, including the Bell Labs TTS
system, were designed to operate on text with little or no "mark-up" information beyond
the text.  The prosody subsystem was therefore designed conservatively, because of the
intrinsic limitations of how reliably prosodic information could be deduced from the text.
If some prosodic feature could not be reliably deduced, it was found better to produce a
neutral prosody than the wrong one.

The next generation of TTS applications will not have this limitation, because many
applications will be conducting a dialog, and will have state information corresponding to
goals and intentions. The application may be "intending" to convey that a set of words is
a single proper noun, that a word is especially important, or that a word needs
confirmation. This state information needs to be expressed prosodically, so one should
think of speech synthesis more in the context of a concept-to-speech system than a text-
to-speech system.   Similarly, there are applications where the simulation of emotions,
subtle meanings in speech acts, and stylistic variations is desirable. This prosodic
information can be supplied to the TTS system by adding mark-up tags to the text.  With
marked text, the TTS system does not need to deduce as much, so it need not be designed
conservatively.

The mark-up system is most useful if it is flexible enough to support any intonation event
that a user or a future dialogue system might want to express. A pertinent question is then
how to design a pitch generation system that will support linguistic models that are not
yet defined.

In this paper, we introduce a prosody tagging and generation system Soft TEMplate
Mark-up Language (Stem-ML). This system combines mark-up tags and pitch generation
in one, therefore allowing future users and dialogue systems to control intonation events
without the concern of writing a pitch generation component for the TTS system. We
define a set of tags that serve the dual function of marking the text and pitch generation.
The user can use these tags to describe linguistic events, and the tags automatically
provide pitch generation support.   It is thus most important to allow the model we define
to represent any possible prosody1.  A second goal is to mark it in a way that is
compatible with standard linguistic assumptions: that accents are localized, and
associated with stress groups, words or syllables.   A final goal is for this model to make
use of information that is predictable from text, such as word accents, tones, and prosodic
boundaries; this will allow us to minimize the number of tags that need to be added to
text.  Ultimately, we see this model becoming an “assembly language” where tags and
their parameter settings would be produced by automated tools.

From a research point of view, it is important to have a model that bridges the gap from
linguistic theories to the objective reality of a glottal oscillator with a time-varying
frequency.  The model needs to be general enough so that it can provide a quantitative



Prosody Modeling with Soft Templates, Kochanski and Shih.                                      3

representation of many different theories of intonation, and can therefore be used to
compare theories.

1.1. Literature review

Most TTS systems divide the task of intonation generation into two components, a
linguistic modeling component and a pitch generation component (Sproat, 1998). The
linguistic modeling component is carried out as part of the text analysis, where the input
text stream is processed, and intonation events are deduced from the text and from high-
level tags that contain non-deducible information about prosodic intent.  The intonation
events are then coded in abstract representations. Examples of the linguistic modeling
component include ToBI (Silverman et al., 1992), Tilt (Taylor, 1998), INSINT (Hirst
et al., 2000), among others.   Lexical tone languages such as Chinese and Vietnamese
conveniently provide some of this information from the lexicon.

The pitch generation component is the decoding process where f0 contours are generated
from the linguistic representations. Traditionally, the pitch generation component is
designed to support a specific abstract representation and is implemented after the
representation is known. For example, given ToBI labeling, one may write a rule set to
describe the f0  shapes and their pitch values (Anderson et al. 1984), or to use machine
learning techniques to train the target values, including linear regression model (Black et
al., 1996), CART tree models (Dusterhoff et al., 1999) and dynamical system models
(Ross and Ostendorf, 1999).  These pitch generation models are the decoders of ToBI,
and will not support concepts that are not represented in ToBI.  It should be obvious that
phenomena that are not coded in the linguistic modeling component cannot receive
support from the pitch generation component.

In the remainder of this section, we review the literature in the area of intonation
modeling, finding the common ground where multiple models might be interfaced to a
common pitch generation component.

The primary goal of intonation research is to model natural  f0 contours of speech,
preferably in relation to a transcription and a description of the prosodic intent of the
speaker.  The starting point of intonation research is the time series of  f0. But the
interpretation of the f0 information diverges widely among intonation schools. Table 1
represents a view of how one can classify the various intonation schools. The shape of an
accent may be fully-specified (i.e. defined without gaps) or under-specified (defined by
disconnected regions or isolated points). Along another dimension, f0 values at any given
time may be treated as a single component or as the combination of multiple components.
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              Under-specified      →       →      →      Fully specified
Single
component

INTSINT ToBI
Xu

Tilt, IPO Olive,
Machine
learning

Two
components

Grønnum Fujisaki

Multiple
components

Van Santen

Table 1: Intonation Schools classified by the way they describe prosody.

INTSINT (Hirst et al., 2000) is an underspecified intonation system that defines an
accent by a single point. Fitting quadratic spline curves through these points generates
surface f0.

The most widely used under-specified accent shape is represented by the ToBI school
(Beckman and Ayers, 1997; Silverman et al., 1992), which developed from earlier works
such as Pierrehumbert (1980), Liberman and Pierrehumbert (1984), and Pierrehumbert
and Beckman (1988).  Each accent is represented by no more than two points, which
specify abstractly the relative contrast of high (H) and low (L).   One goal of the ToBI
system is to specify a minimal set of categorical labels for intonation. These labels are
usually interpreted as phonological distinction between accent types.

Xu et al. (1999) represents Chinese tones with under-specified, static or dynamic targets.
The surface f0 contours are generated with a model that approaches these targets
asymptotically within the domain of a syllable.

Tilt (Taylor, 2000; Taylor, 1998) allows more samples than ToBI near the peak of an
accent and leaves the other regions unspecified, hence its status half way to a fully
specified system. Tilt considers all accent types to be continuous variations of a single
class.  Surface variations are accounted for by changes in the continuous parameters. IPO
(de Pijper, 1983) prepares a piecewise-linear approximation to the pitch contour. They
then associate the slope and height of these lines with various types of accents.

Olive (1975) described a very early fully-specified system, following work by Levitt and
Rabiner (1970).   His model stored the surface pitch vs. time contour as a function of the
grammatical structure of the sentence.  The contour was then approximated by
polynomial splines attached to words, to allow for duration variations.

Several works using machine learning techniques generate densely sampled f0 values,
including Chen et al. (1992) and Malfrère et al. (1998).  We classify these works as fully
specified systems even though in some cases the concept of accent may not be clear.
Ross and Ostendorf (1999) described an interesting machine learning system where a
discrete learning system would predict vectors attached to phonemes and syllables, and
these vectors would in turn drive a (learned) dynamical system to predict f0.



Prosody Modeling with Soft Templates, Kochanski and Shih.                                      5

The advantage of using an under-specified accent shape is that it allows sufficient
distance between specified accent targets to allow a smooth f0 transition, typically by way
of interpolation.  The drawback is that it ignores changes of shape between specified
targets.  On the other hand, a system with fully specified accents leaves little room to
resolve conflicting targets.  A simple concatenation of fully-specified accents will result
in a pitch curve with unnatural jumps at the concatenation joints.  Many systems, such as
Fujisaki (1983, 1988), use filters to smooth out abrupt changes in f0.  Alternatively, van
Santen (1997, 2000) requires each accent to begin and end at zero to ensure smooth
connections between accents.

Turning to the f0 dimension of Table 1, many intonation schools treat surface intonation
contours as the superposition of a phrase component and an accent component. Grønnum
(1992) and Fujisaki (1983, 1988) are representatives of this view.

A well-defined model that fully specifies accent shape and uses multiple components is
van Santen’s (van Santen and Möbius, 1997, 2000; van Santen et al., 1998), where
accents are represented by densely populated points, providing a mechanism to describe
highly complex accent shapes in detail.  We characterize van Santen's system as having
multiple components, because in addition to the phrase component, each accent in the
phrase also adds a phrase-length component that contributes to the surface f0 contour.

The advantage of multiple components is that it provides a mechanism to separate
individual accents from long-term effects. However, if one allows multiple components,
then one necessarily faces the problem that there is no unique solution in the
decomposition of a single f0 time series into multiple components.  Any such
decomposition depends on a model of the speech process, and is only as good as the
underlying model.  In contrast, Liberman and Pierrehumbert (1984) explicitly reject the
notion of a phrase curve and represent intonation contours as a single component. The
advantage of representing f0 information as a single component is that the representation
of accent heights will then be transparent, which lends itself to convenient automatic
labeling.

Stem-ML provides a well-defined mapping from tags to f0 contours, replacing the pitch
generation algorithm of TTS. Accent shapes are templates, represented by the stress tag
(§3.4, 4.4), which can be over-specified (tags overlap in time), fully-specified or under-
specified.  We allow a complex phrase curve which is described by the step and slope
tags (§3.2,3.3,4.1,4.2), but f0 can also be represented without one. Each tag places
constraints on the pitch calculation, and the resulting pitch contour is a compromise
between two groups of constraints: physiological constraints that require the pitch
trajectory to be smooth, and communication constraints that bring the surface pitch
contour close to the tag specification (see mathematical description in §2). The templates
bend to meet requirements from neighboring accents or the phrase curve, therefore we
call them “soft” templates. Conflicts between accent target specification are resolved in a
way that depends on strengths (§3.4,4.5).   Strong tags dominate the resulting pitch
contour while weak tags accommodate to strong neighbors.
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Typically, there are many ways to represent a given prosody with Stem-ML, and one can
write a Stem-ML description that is similar to many models in the existing literature.
While one may need a non-trivial algorithm to translate from other tagging systems into
Stem-ML tags, Stem-ML can provide a representation close enough for translation to be
possible.  For example, it can approximate van Santen’s model with overlapping long
stress tags, one tag per accent, along with a simple phrase curve. ToBI can be
approximated with stress tags, each with two points in their shape, and no phrase curve.

An alternative classification of intonation systems is Ladd’s (1996) distinction between
overlay and linear sequence models.  Again, we can build models in both classes.
Overlay models build f0 curves by superposing f0 features of different sizes, for instance
sentence, phrase, word, and syllable scopes.  Stem-ML models of that class can be built
using phrase curves and/or superposing stress tags of different scopes.   On the other
hand, linear sequence models are naturally described as a sequence of stress tags, one per
tone or accent.

1.2. Concepts

The physical modeling in Stem-ML was inspired by tone languages such as Mandarin.
Isolated syllables in tone languages have pitch contours close to the ideal shapes of their
tones, while in sentences, tones interact due to their close proximity to each other.  As a
result, in natural speech, tone shapes can be far from ideal.  Syllables in weak positions
can even display inverted tone shapes as speakers prepare for the next strong syllable
(Shih and Sproat, 1992; Xu, 1993).  Stem-ML explains the changes in tone shapes in
terms of interactions with nearby syllables (Kochanski and Shih, 2000; Shih and
Kochanski, 2000). This indicates that prosody is pre-planned, and we suggest that the
planning is done to minimize physiological efforts given the communicative demands of
speech.

Stem-ML assumes that humans are capable of pre-planning of pitch contours inside a
phrase2.  The final pitch curve depends on tags in both the forward and reverse directions
inside a phrase.  This provides a natural way of expressing interactions between
neighboring accents and tones.  Pre-planning of other aspects of speech has been shown,
such as inspired lung volume (Winkworth et al., 1994; Winkworth et al., 1995;
McFarland et al., 1992; Whalen and Kinsella-Shaw, 1997) and pitch as a function of
sentence length (Shih, 2000).  Experiment does not yet afford good evidence for the
limitations or the maximum range of pre-planning.  Indeed, the range may well be
strongly variable.  Practiced, prepared speech may have no clear limits to planning, while
speech under heavy cognitive load may barely be planned to the end of a word.  Stem-
ML phrase tags (§3.5, 4.8) are the mechanism for specifying the limit of pre-planning.
The Stem-ML model is causal between phrases, since the pitch at a given time depends
only on the tags in the current and past phrases.  However, the model is acausal inside a
phrase since we assume a phrase is planned as a unit, so the pitch can be influenced by
any linguistic event in the phrase.
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Commonly, people seem to end a phrase without considering what the pitch should be at
the beginning of the next phrase, then make any necessary pitch shifts during the pause
between phrases or at the beginning of the following phrase. In fact, this behavior is the
definition of our phrases: planning stops at phrase boundaries.  Thus, one places phrase
boundaries at locations where the past pitch is independent of future linguistic features.
In our experience, sentence boundaries and long pauses seem to imply Stem-ML phrase
boundaries, but proper choice of phrase boundaries may well depend on the language
being spoken.

Stem-ML makes one physically motivated assumption.  It assumes that the prosodic
trajectory is continuous and smooth over short time scales.  We know that all aspects of
prosody are controlled by muscle actions, and that the mapping between muscle
activation and perceived prosody is not strongly nonlinear.  Thus there are smooth and
predictable connections between neighboring accents, because muscles simply cannot
discontinuously change position.  The muscles that control the larynx cannot respond
faster than 100 ms (Stevens, 1998, pp. 40-48 and references therein; Xu and Sun, 2000), a
time that is only slightly shorter than a typical syllable, so we expect the intonation of
neighboring syllables to interact. This interaction should be important in all languages.
Our goal is natural-sounding speech, and a careful introduction of physiological
constraints on the models can help text-to-speech systems sound more like a real human.

Öhman (1967) and Fujisaki (1983) were instrumental in incorporating physiological
constraints in pitch generation. Xu et al. (1999) is a more recent work providing a
quantitative model for Chinese tones.  Some related work in articulatory modeling
includes Browman and Goldstein (1990), Keating (1990),  Moon and Lindblom (1994),
Fujimura (2000), and is reviewed in Perrier, Ostry and Laboissière (1996) and
commentaries in Abry (1998).

We assume that the speaker balances the physiological energy cost of adjusting muscle
positions against the need to produce unambiguous speech by matching the tone/accent
templates.  At prosodically strong positions in a sentence, the speaker is generally willing
to expend the effort needed to produce precise prosody.  Since energy costs increase with
muscle velocities and accelerations, slow and smooth motions are less costly.  Thus, on
weak positions, the speaker tends to minimize effort by smoothly preparing for the next
strong tone/accent, and largely ignoring the ideal shape of the weak syllable.
Intermediate strengths yield intermediate results.  This aspect of the model also builds
upon Ohala (1992) who described speech as a compromise between effort and
communication clarity, but used the concept only qualitatively.

This same model can apply to other gestures related to language, so long as there is a
direct relationship between muscle positions and the perceived gesture, and the
relationship is not excessively nonlinear.  While pitch is generally believed to be the most
important component of prosody, it has been known since the 1950s (Fry, 1955; Fry,
1958; Bolinger, 1958; Lieberman, 1960; Hadding-Koch, 1961) that amplitude is also an
important component.  Recent literature (Maekawa, 1998; Kehoe et al., 1995; Sluijter and
van Heuven, 1996; Pollock et al., 1990; Sluijter et al., 1997; Turk and Sawusch, 1996,
Erickson, 1998 and references therein) also provides support for amplitude, spectral tilt
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and jaw movement as important components of prosody.  We believe that this model can
apply to at least some of these motions.

A single Stem-ML tag can produce a correlated ensemble of changes in a variety of
acoustic parameters.  For instance, an accent could include both a rise in pitch and a
bump in amplitude.  Furthermore, the tag set can apply to facial features. The
assumptions of direct relationship and no strong nonlinearity are clearly true for facial
expressions, as the muscle motions are directly visible.

In the case of the fundamental frequency of speech, one can define a signal we refer to as
f0*, which should show smooth and continuous behavior.  In voiced segments, f0* is the
observed pitch with segmental effects removed, where we consider segmental effects to
include all correlations of f0 with the phoneme sequence.  An example of using f0* to
model intonation can be found in Black and Hunt (1996), where they use a smoothing
technique to reduce the amplitude of segmental effects associated with consonants.  For
their algorithm, they report a 9.9 Hz RMS difference between f0 and f0*, which can be
taken as a rough estimate of the size of segmental effects.

Without segmental effects, the factors that influence the pitch are the vocal fold tension
(Ohala and Ladefoged, 1970) and subglottal pressure (Monsen et al., 1978).   The vocal
fold tension and subglottal pressure are both smoothly changing functions of time,
controlled by nerve impulses, Newtonian mechanics, and the viscoelasticity of tissue. The
overall relationship between muscle activation and pitch is smooth, nearly linear, and the
effects of the different muscles can probably be combined into a single parameter.  For
instance, even though low tones may be generated by activation of the sternohyoid
muscle (Gårding et al. 1970), and high tones by activation of the cricothyroid (Atkinson
1978; Simada and Hirose, 1978), as long as the dynamic response of the two sets of
muscles are similar, the difference in the two responses should map nicely to f0, because
the difference corresponds to the extension of the vocal folds.

Detailed physiological models for f0 are described in Titze (1993a) and references
therein.  Also see the discussion of the “Cover model” in Titze (1993b) for an example of
how activity of the Thyroarytenoid and Cricothyroid muscles combine.  Similar
calculations involving the lung pressure also show a smooth dependence that is not
strongly nonlinear.

We are thus able to use a phenomenological model of the vocal fold oscillation, rather
than a detailed model.  Since the vocal fold tension seems to be the most important
contribution, one can consider f0* to be an approximate measure of the vocal fold tension.
We make quite weak assumptions about the behavior of the laryngeal oscillator: merely
that f0*  is a smooth function of a control parameter that has dynamics like a muscle.  We
do not need to associate the control parameter with any particular muscle. Since all the
control parameters are smooth, we know that the frequency of the glottal oscillator must
also be smooth except possibly at a few discontinuous jumps3 (Herzel, 1995; Berry et al.,
1996), such as register transitions.
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Segmental effects can be approximated as perturbations on the glottal oscillator caused
by changes in the environment in which it operates. While segmental effects are beyond
the scope of this paper, they can be included in the model, also see §2.6, 1.4.

Because Stem-ML is defined in physiological terms that are common to all humanity, and
because we do not associate Stem-ML tags with particular language features, it has the
possibility of being a language-independent description of prosody.

Stem-ML allows the existence of both phrase curves and local accents.  The two concepts
are distinguished by their scope.  Local accents (i.e. stress tags) control the shape or
value of f0* over the scope of the accent, which might be a syllable, word or stress group.
Far from their center, they have little effect.  The phrase curve, on the other hand, has no
assumption of locality, and may be appropriate for pitch changes on scopes larger than a
word.

While Stem-ML allows a description of pitch in terms of localized accents riding on a
phrase curve, it does not enforce it.  The system places minimal restrictions on the
number of tags, the scope of tags, the location of tags, or parameter values4.  We intend it
to be theoretically neutral and language independent, so it can be used as a quantitative
tool for comparing theories of prosody.  As a consequence of this, a complete application
that uses Stem-ML (such as a TTS system) will require a language-specific layer that
defines which Stem-ML tags are associated with which linguistic events (§1.4,§5.2).

One can show that Stem-ML can represent any prosody by placing a short stress tag at
each measured datum.  As long as the tags’ strengths are nonzero, there are then a set of
equations relating the shape attributes to f0 which are linear in the shape attributes, and
can be shown to be nonsingular.  Then, the Fundamental Theorem of Linear Algebra
shows that there is a set of shape attributes that will exactly reproduce the data.  An
equivalent proof can be constructed using one step tag per datum.  Both proofs become
straightforward if the strengths are large and the smooth parameter is small, in which case
f0*simply follows the shape attribute (or the to attribute for step tags).  Thus, Stem-ML is
language independent, at least in the sense that it can represent the prosody of any
language.

1.3. Justification

We justify the introduction of a prosody generation model on several grounds:

• It is capable of accurately reproducing any pitch trajectory in a compact, robust
manner.

• It is language-independent.  We have used it to model languages with syllable-scope
tones (e.g., Mandarin Chinese),  word-scope accents (e.g., English), and we expect it
can be used for languages where accents are attached to phrase boundaries.

• It is capable of representing reasonable prosodies for intimate mixtures of multiple
languages.  English names in the midst of a Mandarin speech stream can be tagged
with English tags, and will come out with English accents.  Having such linguistic
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flexibility for European systems is also obviously desirable. As a consequence, it can
be used as a general, multi-language pitch generation component.

• It is reasonably theory-neutral.  For instance, Stem-ML tags can be mapped onto
existing systems such as ToBI.  Consequently, it should be possible to quantitatively
compare different intonation systems and decide which are more successful in
describing speech data.

• Stem-ML automatically meets physiological smoothness constraints on f0*.
• It models pre-planning of speech and interactions between neighboring accents.
• Stem-ML can represent long-range correlation in the pitch trajectory  by its accent

interaction rules and by optional use of phrase curves.
• It is suitable for machine fitting.

1.4. Where does it fit in a TTS system?

When used in a TTS system, this model interprets a tag set (Stem-ML, level 1) in the
middle of the prosody subsystem.  Input text contains a broader set of Stem-ML (level 2),
not yet defined, that controls prosody through linguistic definitions.  For example, some
of these higher-level tags might approximate the ToBI mark up scheme (Pierrehumbert,
1980; Beckman and Ayers, 1997; Silverman et al., 1992).  The input text might
alternatively comprise other languages that provide a high-level description of the
prosody of a text stream, such as SSML (Taylor and Isard, 1997) and SABLE (Sproat et
al., 1998). These languages are broad descriptions of prosodic intent while Stem-ML is a
detailed description of pitch movement.  In general, Stem-ML and these languages are
complementary, and could work in tandem in one system.

(parsing, etc.).
Accent generation.

Text with
prosodic
mark-up

(this work)
evaluation
Stem-ML

selection

Duration
estimates

specification
prosody
Stem-ML

Phoneme
sequence Unit

of acoustic
Concatenation

signal processing

Synthetic
Speech

Text processing segments and

Figure 1: A generic text-to-speech system, showing where Stem-ML modeling might be used.

 The prosody subsystem contains two or three components:
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A linguistic modeling component to convert Stem-ML level 2 tags into level 1
tags.  This component contains models for discourse and phrasal
intonation, including microprosody of domains such as lists, movie titles,
proper names, and numbers.  It will model questions, mark new and
important words in the discourse, and model requests for confirmation.
This component also uses a lexicon to mark accent positions.  Its output is
a structure in memory that corresponds to text marked with Stem-ML
level 1 tags.

A pitch generation component that takes the Stem-ML level 1 tagged text and
produces a time series of pitch values.

A segmental effects component that calculates how f0 depends on the phoneme
sequence (§2.6).  At the current state of the art, this component is optional,
as segmental effects do not seem to have a major influence on the
intelligibility of TTS systems, despite the fact that segmental effects can
be perceptible and can help humans to recognize phonemes (Hillenbrand
and Houde, 1996, Haggard et al., 1981, Hombert, 1978, Massaro and
Cohen, 1976).

This document focuses on the pitch generation component, and defines all Stem-ML
level 1 tags.

1.5. Outline of the algorithm

Stem-ML serves the dual function of being a prosody mark-up language and a pitch
generation system. From the user’s point of view, the system is a collection of tags. These
tags can be used to describe prosodic events such as phrase curve, accents, properties of
accents, and how different components combine to create the surface pitch contours.
Internally each tag is defined mathematically with parameter settings describing
variations.
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Calculate phrase curve

Calculate prosody

Nonlinear
mapping

Matrix mapping from linguistic
attributes to observables

F0*,
possibly
amplitude,
lip position,
...

<set add/>
<set base/>

<set range/>

<stress/>

<step/> & <slope/>
<set pdroop/>

<set smooth/>
<set adroop/>

 pt

 et: emphasis

 pitch

Figure 2: A block diagram showing the Stem-ML algorithm. The white boxes show the steps of the algorithm.
The gray boxes show input data and results.

Figure 1 is the block diagram of the Stem-ML algorithm. The steps are:

• Calculate the phrase curve.
• Calculate the prosody, relative to the phrase curve.
• Map from an abstract description of prosody to observable quantities.

The gray boxes show the tags that influence each step. For example, <step/> and
<slope/> are two types of tags that can be used to define phrase curves, and the
<stress/> tags allow user to specify tone or accent templates.

Each tag puts a set of constraints on the prosody. A set of built-in constraints enforce
smoothness and continuity of f0*.  The algorithm accumulates constraints, then calculates
the prosody that best meets the constraints.  Each tag can have a different strength, and
the strengths control how the system compromises between any conflicting constraints.
One can look at the model as an implementation of elastic templates that compromise
with their neighbors. We will describe the mathematical basis in the next section (§2),
which will be followed by detailed description of the tags (§3).  Examples showing tag
usage and surface pitch variations corresponding to the parameter settings are given in
the tag description section (§4).
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2. Mathematical basis

We calculate the prosody by building a set of linear equations involving the pitch at every
instant, then solving that set of equations. This set of equations can be divided up into
several groups, depending on their origin.   The first group of equations expresses the
overall smoothness and continuity of the pitch curve.  Each tag adds another group to
describe its constraints on the pitch curve. When the set of equations cannot all be
satisfied exactly (which is the common case), Stem-ML returns a pitch curve that
compromises among the constraint equations.

Technically, the algorithm implements a regularized fit to soft constraints, by way of a
least-mean-square solution of the constraint equations.  It calculates one phrase at a time,
and enforces continuity at phrase boundaries.  The algorithm proceeds in four stages:

• First, it accumulates constraints on the phrase curve, then the resulting set of linear
equations is solved to yield the phrase curve which best matches the constraints. The
constraints come from step and slope tags.

• Second, the system accumulates constraints on the pitch trajectory, and solves for the
optimal pitch at each time.  These constraints come from stress tags and the phrase
curve.

• Third, we map from a linguistic representation of prosody into the observables.
• Finally, we apply nonlinear transformations to match human perception.

Note that points on both the phrase curve and the pitch trajectory can be vectors,
controlling several observable components of prosody, like f0* and amplitude.

2.1. Phrase curve calculation

The first group of equations in the phrase curve calculation constrains the curve to be
continuous.    There is one equation for each time t, that relates each point to its neighbor:

tslopepp ttt ∆⋅=−+ 1 , where tp  is the phrase curve, tslope  is the rate attribute of the
nearest preceding slope tag (§3.3, §4.2), and t∆  is the interval between prosody
calculations (typically 10 ms). Often, the slope is zero, and then these equations can be
interpreted as requiring each point to be close to its neighbor, which implies continuity.
All these equations have a fixed strength: ts continuity ∆= /01.0][  ( t∆ is measured in
seconds).  This group of equations has the side effect of enabling automatic interpolation
between step tags (see Figure 7).

Each step tag (§3.2, §4.1) adds a group of two equations to the set of constraints:
topt =  and bypp wtwt =− −+ , where  tsmoothw ∆+= 21  (rounding down) is half

of the smoothing width (§3.1, §4.8), t is the position of the tag, and “by” and “to” are the
tag’s attributes.  These equations allow you to specify the value of the phrase curve (via
the “to” attribute) and/or to place steps in the phrase curve (with the “by” attribute).  Step
tags can be used to draw an arbitrary phrase curve.  Each of these equations has a strength
(defined below).  The strength controls how closely the solution matches the tag.  In the
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common case, where tags are widely spaced, any 1>>strength  will cause the tag to be
followed accurately.

Finally, when pdroop (§3.1,4.3) is nonzero, we add one equation at each point that pulls
the phrase curve down toward zero: 0=tp .  The droop equations typically have a very

small strength individually: tpdroops droop ∆⋅=][ , but they act together to eventually

bring the phrase curve down.  Pdroop might be used to implement declination.

Overall, there are n unknowns (one tp  at each time point), and there is one droop
equation for each, along with 1−n  continuity equations, and with two equations per
step tag.  There are more equations than unknowns, so the system is overdetermined and
we must find the solution that comes closest to matching all the constraints.  We use a
least-squares solution to implement the compromise.

The equations can be written in matrix form as bspas ⋅=⋅⋅ , where s is the m by m
diagonal matrix of strengths, a (a is m by n) contains the coefficients of the tp  in the
equations, and b (which is m by 1) contains the right hand sides of the equations (the
constants).  P is a (m by 1) column vector.  M is the number of equations.

We transform the equations into normal form for solution, bsapasa tt ⋅⋅=⋅⋅⋅ 22 ,
because the left hand side then contains a band diagonal matrix ( asa t ⋅⋅ 2 ), with narrow
bandwidth (superscript t denotes a matrix transpose).  That bandwidth is no larger than w,
which is typically much smaller than n or m.  The narrow bandwidth is important because
the cost of solving the equations scales as nw 2  for the band diagonal case, rather than 3n
for the general case.  In our application, that scaling reduces the computational costs by a
factor of 1000, and assures us that the number of CPU cycles per second of speech will
be constant.

Figure 3  shows the magnitude of the elements of asa t ⋅⋅ 2  in an example calculation of
a phrase curve (Figure 11).  The band diagonal form is clearly seen.  The bright spot on
the diagonal in the upper left corner comes from an initial step to tag, and the four bright
points near the middle of the image come from a step by tag at t=1s.  The diagonal stripe
comes from the continuity equations, which relate each point to its neighbors.
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Figure 3: Magnitude of the elements of asa t 2  for the example shown in  Figure 11 (curve #2).  Brightness
increases with the magnitude of each matrix element; black is zero.  Elements near the main diagonal (upper L to
lower R) correspond to equations that relates nearby points on the phrase curve, and in general, the (i,j)th element
corresponds to an equation that relates the ith and jth points on the phrase curve.

Example:
Assume a sampling interval of ∆t=0.01s, smooth=0.04s, pdroop=1, and tags

<slope rate=1 pos=0s/>,
<step to=0.3 strength=2 pos=0s/>,
<step by=0.5 pos=0.04 strength=0.7/>.

One then gets the following set of equations:
1: p0=0.3; s1=2 # step to
2: p6-p2=0.5; s2=0.7 # step by
3: p1-p0=0.01; s3=1 # slope
4: p2-p1=0.01; s4=1 # slope
5: p3-p2=0.01; s5=1 # slope
6: p4-p3=0.01; s6=1 # slope
…
11: p0=0; s11=0.01 # pdroop
12: p1=0; s12=0.01 # pdroop
13: p2=0; s13=0.01 # pdroop
…
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The matrix a is then









































−
−

−
−

−

=

...
000000100
000000010
000000001

...
000011000
000001100
000000110
000000011
001000100
000000001

a ,

where each row corresponds to the left-hand side of one of the equations
above.  Each column corresponds to a time value.  The right-hand side of
the equations above goes into the b matrix:









































=

...
0
0
0
...
01.0
01.0
01.0
01.0
5.0
3.0

b .

Each row, again, corresponds to one of the equations above.  The diagonal
elements of the strength matrix are

[ ]...01.001.001.0...11117.02, =iis , where each entry
corresponds to one equation.

In between phrases, the pitch must also be continuous.  We enforce the physiological
requirement of continuity between phrases by beginning the calculation of phrase 2 a
little early, so that it overlaps the end of phrase 1, then taking values of the phrase curve
and prosody which are known from the end of phrase 1 and substituting them into the
beginning of phrase 2.  This technique enforces a strictly causal relationship between
phrases so that later phrases smoothly follow from earlier phrases, yet tags in the later
phrases cannot affect the results of earlier phrases.



Prosody Modeling with Soft Templates, Kochanski and Shih.                                      17

2.2. Pitch trajectory calculation

The next step is to calculate the prosody, te , based on the phrase curve and stress tags
(§3.4, §4.4).  In a simple text-to-speech system that only predicts pitch, the prosody is
essentially the pitch trajectory.  It contains all the peaks and valleys, and may differ from
the pitch only by a simple scaling.  We follow the same procedure as we did for the
phrase curve (§2.1), though we end up solving a different set of equations.  As before, a
group of continuity equations apply at each point: 01 =−+ tt ee , with a fixed strength

ts continuity ∆= /01.0][ .  An additional group then expresses smoothness:

02 11 =−+− −+ ttt eee , each with a strength tt
smooth

smooths ∆∆ ⋅⋅= 01.0
2][
π  (see §3.1, §4.8).

The smoothness equations imply that there are no sharp corners in the pitch trajectory.
Mathematically, they ensure that the second derivative stays small, which comes from the
physical constraint that the muscles used to implement prosody all have a nonzero mass,
therefore they must be smoothly accelerated and cannot respond jerkily.

As before, there is also a group of N droop equations, tt pe = , with strength

tadroops droop ∆⋅=][  (see §3.1, §4.7).  These equations pull the pitch trajectory toward
the phrase curve, much like pdroop pulls the phrase curve toward zero.  This group can
be interpreted as stating that stress tags have local effects, and that to some degree, the
pitch will tend to follow the phrase curve, at least on time scales longer than adroop/1 .

Next, each stress tag adds a group of equations: one equation that constrains its mean
pitch relative to the phrase curve, and a set of equations that locally constrain the shape of
the pitch trajectory.  To derive these equations, the shape attribute of the stress tag is first
linearly interpolated to form a dense array of target values.  An accent defined by

jj xtxtxtxtshape ,221100 ,...,,=  is interpolated to Jkkk XXXX ...,, ,21 ++ , where ttk ∆= /0

is the index of the first point of the accent’s shape, and ttJ j ∆= /  the index of the end of

the accent5. We then define the accent template to be ttt pXY += : the sum of the shape
and the phrase curve.  The equation that constrains the accent’s mean pitch is then

∑∑
==

=
J

ki
i

J

ki
i Ye , with a strength )sin( 2][

π⋅⋅= typestrengths pos .  As type increases from

zero, one can see that the strength of this equation also increases from zero (which means
that the accent doesn’t care about its mean pitch), to strength when type=1.  See §4.4.1,
§4.4.2 and §4.5 for descriptions of strength and type.

There is also one equation for each point in the accent (i.e., from k to J).  These equations

define the shape of the accent: YYee ii −=− , where )1/( +−= ∑
=

kJee
J

ki
i  is the average

value of the pitch trajectory over the accent, and )1/( +−= ∑
=

kJYY
J

ki
i is the average pitch
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target of the accent.  Subtracting the average values prevents these equations from
constraining whether the accent sits above or below the phrase curve; the intent is to
constrain just the shape. Each of these equations has strength

)1/()1()cos( 2][ +−+⋅⋅⋅= kJjtypestrengths shape
π .

One then builds the a and b matrices and solves them, exactly analogously to the phrase
curve.  The bandwidth of these matrices is generally somewhat larger, as accents can be
wider than the smoothing width, but one still sees a 100x speedup for the band-diagonal
calculation relative to the general solution.

Figure 4 shows the magnitude of the elements of the asa t 2  matrix in an example
calculation of te .  Points near the diagonal show the coupling of prosody at nearby times;
points further off the diagonal show longer-range interactions.  The boxes correspond to
the scope of each stress tag.  The upper left box corresponds to the first, strongest stress
tag: it is brightest, indicating that it has the largest strength and provides the tightest
constraint the prosodic trajectory.  The central band is wider than in Figure 2, because the
smoothness equations have been added to the set.

Figure 4: The magnitude of elements of the asa t 2  matrix for calculation of one of  the pitch curve in Figure
23, with the medial falling tone having a strength=3.  Black is zero.  The central white band corresponds to the
continuity, smoothness, and droop equations, while the three gray boxes correspond to the equations that define
the shape and positions of the three accents.
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2.3. Optimization representation vs. constraint equations

The constraint equations can be cast into an equivalent optimization problem with an
interesting interpretation.  One can prove, by a rearrangement of the normal equations,

that the equation )()( 2 beasbeaE t −⋅⋅⋅−⋅=  gives a minimum value of E for the
same e that solves the constraint equations.  So, finding e by minimizing E is equivalent
to solving the constraint equations, but it is easier to interpret.

We can break up equation for E, above, by selecting groups of rows of a and b.  These
rows correspond to sets of constraint equations, and E will be a sum over its fragments.
The most interesting and suggestive way to break E is to separate out the continuity,
smoothness, and droop equations into one group (we shall call it effort), and leave the
constraint equations that come from tags in another (which we shall call error).  Then,
one can identify erroreffortE += .

Qualitatively, the effort term behaves like the physiological effort: it is zero if the
muscles are stationary in a neutral position, and increases as muscular motions become
faster and stronger.  Likewise, the error term behaves like a communication error rate: it
is minimal if the prosody exactly matches the ideal target, and increases as the prosody
deviates from the ideal.  As the prosody deviates from the ideal, one expects the listener
to have an increasingly large chance of misidentifying the accent or tone shape.

For tags with large strength, the error term increases steeply as the pitch deviates more
from the target.  The optimal solution will then have relatively small deviations.  For
weak tags, on the other hand, the error term is unimportant: it’s OK for the pitch to
deviate from the target, so long as the generated pitch is smooth and requires little effort
to produce.

It seems reasonable that, while speaking, humans should attempt to minimize something
like E.  Certainly, when we speak, we wish to be understood, so we have to consider the
error rate in the overall speech communication channel (speaker ⇒  environment ⇒
listener).  Likewise, much of what we do is done smoothly, with minimum muscular
energy expenditure (as displayed by the popularity of chairs and automobiles), so
minimizing effort in speech is also a plausible goal. We suggest that this form of the
model may provide some insight into the mental processes involved in speech generation.

2.4. Mapping linguistic concepts into observables

At this point, we have a time-varying prosody, which can correspond to the tension or
extension in a group of muscles.  The rest of the algorithm approximates the mapping of
this hard-to-observe prosody into acoustic observables like f0 and amplitude.  In a simple
implementation, the rest of the algorithm might approximate the oscillation frequency of
the vocal folds as a function of muscle tensions.
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From here, we assume that there are statistical correlations between the time-varying
prosody we predict, te , and observable features in the speech signal.  Since te  is, in
general, a vector, we simply multiply it by the matrix of cross-correlations, M.  M is
derived from set range (§3.1).

  Prosody

S
u
r
p
r
i
s
e

     Amplitude

P
i
t
c
h

Figure 5: Schematic example of mapping from linguistic coordinates to observables. The figure shows the time
course of “surprise” and “prodosy” of a hypothetical utterance, and the corresponding outputs (“pitch” and
“amplitude”). The matrix multiplication used in Stem-ML allows for cross-correlations between variables.

This matrix-mapping step can also be used to include correlations between acoustic
variables that are known from physiological experiments.  For instance, f0 has been
shown to increase with subglottal pressure at a rate of roughly 5 Hz/cm-H20 (Ladefoged
1962, Ohala and Hirano 1967, Lieberman et al. 1969).  If Stem-ML is being used to
model the amplitude of speech or other characteristic that is roughly equivalent to
subglottal pressure, its correlation with f0 can be included simply by setting the
appropriate off-diagonal matrix element, as shown in Figure 5.

2.5. Nonlinear transformation and add setting

The relationship between pitch (measured as frequency) and the perceptual strength of an
accent is not necessarily linear.  Nor is there a linear relationship between neural signals
or muscle tensions and pitch (see Fujisaki, 1988, Titze 1993a).  Consequently, any model
of the pitch generation process needs to include the possibility of a nonlinear mapping
between the intended effort or attempted prominence and the final acoustic output.

To implement a controllable, generic nonlinearity, the results from the previous stage,
Met ⋅ , are operated on by the function addxbasexf 1)1()( ⋅+⋅= γ , where

1)/1( −+= addbaserangeγ .  This is an ad-hoc function that can smoothly describe linear
behavior (add=1), exponential (add→ 0), or behaviors in between.  Always, basef =)0(
and rangebasef +=)1( .  Each observable can have a different nonlinearity, controlled
by the appropriate component of the set add tag (§3.1).
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Figure 6 shows the effect of varying add values. It plots f(x) vs. x, with the add parameter
covering the range of normal use with values of 0.0, 0.5, 1.0, and 2.0.

100

200

300

400

0 50 100 150

range * x

f(
x)

add=0.0

add=0.5

add=1.0

add=2.0

Figure 6: Example traces of f(x) with base=100, for various values of add.

2.6. Calculating segmental effects

We do not attempt to model segmental effects with Stem-ML tags. Segmental effects are
caused by  phoneme-depedent muscle control, changes of acoustic impedance, and
changes in air pressure across the glottis as the articulators move to make different speech
sounds. The cause of these effects is largely separate from the intentional control of f0*,
and the two should be accounted for by separate mechanisms.

However, they could be included as reasonable extensions to the overall system.  On one
extreme, if one wanted to calculate segmental effects from a physical model of the
larynx, (e.g., Titze 1988 or 1989), one would need to supply the laryngeal model with
values of subglottal pressure, effective vocal fold stiffness and possibly prephonatory
glottal width.  To the extent that the cricothyroid muscle is used for both voicing and f0
control (Löfqvist et al. 1989), it could be included too.  Stem-ML models could be built
for each to approximate these quantities, since each quantity should have similar smooth
dynamics.  Approximations to the flow resistance and aerodynamic quantities of the
upper vocal tract could then be based on the current phoneme, and the detailed physical
model of the larynx could be evaluated to yield f0.  Essentially, such a detailed model
would replace the ad-hoc mapping and nonlinearity described in sections 2.4 and 2.5.

On the other extreme, segmental effects derived from a machine learning system could be
simply added onto f0* after the nonlinear mapping.  The machine learning system could
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be trained to predict the difference between Stem-ML’s smooth f0* result and actual data
for f0 as a function of phoneme and neighboring phonemes.

Finally, in large-database TTS systems, the segmental effects may come automatically
from the acoustic data.  If acoustic units are selected on the basis of predicted f0, and then
are played without f0 modification, units will carry their original segmental effects.  It is
plausible that the original segmental effects will be approximately correct and
perceptually reasonable in their final context.
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3. Stem-ML tags

We now turn to the definition of Stem-ML tags. These are low-level tags (level 1) that
can be used to describe intonation contours.  These tags may be used to define a higher
level language (level 2) that corresponds to language specific or situation specific events.

Stem-ML level 1 tags fall into four categories:

1) Setting parameters,
2) Defining the pitch curve,
3) Marking accents,
4) Marking boundaries.

3.1. Tags: set

Set accepts the following attributes (see §2 above for mathematical definitions):

• max=value: sets the maximum frequency (in Hz) that the voice (or the TTS
system) should be allowed to produce.  One value per phrase.
Default=550.

• min=value: sets the minimum frequency (in Hz) that the voice or TTS system
should be allowed to produce.  One value per phrase.  Default=40.

• smooth=value: sets the smoothing time of the pitch curve, in seconds (see
§2.2, §4.8).  This is also used to set the width of a pitch step (see §2.1).
The same value of smooth is used for an entire phrase.  Default=0.06.

• base=value: set's the speaker's baseline, in Hz.  The baseline sets the
frequency in the absence of any tags.  Pdroop causes f0* to droop toward
the baseline.  Typically 100 Hz for males, 200 Hz for females.  This has a
single value during a phrase.  Default=150.

• range=mvalue6: set's the speaker's pitch range, in Hz.  All changes and most
settings are measured as fractions of the speaker's range.  Typically
150 Hz for males, 250 Hz for females.  This has a single value during a
phrase.  Default=200.

• pdroop=value: sets the phrase curve’s droop rate toward the base frequency (see
§2.1, §4.3).  In units of fractional droop per second.  Useful values range
from 0 to 2.  Default=0.25.  This has a single value during a phrase.

• adroop=value: sets the pitch trajectory’s droop rate toward the phrase curve (see
§2.2, §4.7).  In units of fractional droop per second.  Useful values range
from 0 to 10.  Default=3.  This has a single value per phrase.

• add=value: sets the nonlinearity in the mapping between the pitch trajectory and
f0*.  Add=1 is a linear mapping, where an accent will give the same f0*
shift if it is riding on a high-pitch region or a low-pitch region.  Add=0
implies addition of )log( 0f , where small accents will make a larger
change to f0* (measured in Hz) when riding on a high phrase curve.
Add>1 gives a slower-than-linear mapping.  Default=0.5.  See §2.5, 4.10.
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• jitter=value: sets the RMS magnitude of the pitch jitter, in units of fractions of
the speaker’s range.  One value per phrase.  Default=0.  See §4.9.

• jittercut=value: sets the time scale of the pitch jitter, in units of seconds.  The
pitch jitter is correlated (1/f) noise on intervals smaller than jittercut, and
is uncorrelated (white) on intervals longer than jittercut.  Large values of
jittercut imply longer, smoother variations in pitch small values imply
short, choppy pitch changes.  Set once per phrase.  Default=1. See §4.9.

Arguments given to the set tag are remembered until the TTS channel is closed, even
across phrase boundaries.

3.2. Tags: step

The step tag takes several arguments, and operates on the phrase curve (see §2.1):

• by=value.  Steps are specified as a fraction of the speaker's range.  The step in
the phrase curve will appear as a smoothed step in the pitch output.  The
default value is zero.

• to=value.  Force the phrase curve to have a certain frequency at the tag’s
position, specified as a fraction of the speaker's range.  The default value
is zero.

• strength=value.  Controls how the step interacts with its neighbors.  The
default value is 1.

• type=value.  Controls whether the target value or the size of a step is the
strongest constraint. If it is important that the phrase curve should reach a
particular value, then set type=1.  Alternatively, if the size of the step is
critical, then set type=0.  Intermediate values let one control both the mean
pitch and shape.  If by and to are both specified, type defaults to 0.5; if just
by is specified, type defaults to 0; if just to is specified, type defaults to 1.
These defaults allows the step tag to behave sensibly for the inputs
<step to=”0.3” /> and <step by=”0.4” />, along with a more fully
specified tag like
<step to=”0.3” by=”0.4” strength=”1.3” type=”0.4” />.

For convenience, we call <step to=X/> (i.e., type=1) a step to tag, and
<step by=Y/> (i.e., type=0) a step by tag, though the Stem-ML interpreter doesn’t
make any distinction.

3.3. Tags: slope

The slope tag takes one argument, and operates on the phrase curve (see §2.1):

•  rate=value  "%"?: sets a rate of increase (or decrease) for the phrase curve.  It
is measured as a fraction of the speaker's range per second.  If the "%"
mark is present, it is measured as the fraction of range per length of the
phrase.  Common values are between –1 and 1.  Default=0.
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3.4. Tags: stress

The stress tag defines the prosody relative to the phrase curve (see §2.2).  Think of stress
tags as elastic objects, welded together.  Each stress tag has a preferred shape and a
preferred height relative to the phrase curve, but they will bend to compromise with each
other.  Stress tags will also compromise with the hard-wired requirement that the pitch
curve must be smooth.  Their behavior will become clearer when we give examples in
section 4.4.  Stress tags accept the following attributes:

• shape: This specifies the ideal shape of the accent curve.  This is the shape in the
absence of compromises with other stress tags and constraints. (See §6.1
for syntax).

• strength=value.   Corresponds to the linguistic strength of the accent.  Accents
with zero strength have no effect on pitch.  Accents with strengths much
bigger than 1 will be followed accurately, unless they have strong
neighbors.  Useful values are between 0 and 10. Default is 1.

• type=value.  Controls whether that accent is defined by its mean value relative
to the pitch curve, or by its shape.  If it is important only that the accent
should be above or below the pitch curve, but the detailed shape is not
important, you should set type=1.  Alternatively, if the shape is critical
(e.g., the accent is a falling tone), but it doesn’t matter whether it ends up
above or below the pitch curve, then you should set type=0.  Intermediate
values let you control both the mean pitch and shape to varying degrees.
Default is 0.5.

3.5. Tags: phrase

The phrase tag inserts a phrase boundary.  Normally, this is used to mark a phrase or
breath group.   No pre-planning occurs across a phrase tag; the prosody before it is
entirely independent of whatever tags appear after it.
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4. Effect of the tags

In this section we will go through the Stem-ML tags one at a time, showing their effects
and how they interact.  Where appropriate, we will give examples of how they can be
used to model real speech data.

In all following examples, natural f0 contours are plotted on the y-axis as a function of
time with the symbol “*”.  Pitch curves generated by Stem-ML tags are plotted with solid
lines, and phrase curves are plotted with dashed lines. The Stem-ML tags used to
generate the pitch contour are given after the examples.

In the following examples that match real data, we use symbolic representations of Stem-
ML tags, following a convention resembling INSINT (Hirst et al. 2000) for convenience
and clarity. However, the similarity to INSINT is superficial, especially for stress tags.

Accent templates (stress tags) are represented by Greek letters while Chinese tones in
later examples are represented by numerals in outline font. Subscripts indicate their
strength values.  All accent templates in these examples are aligned with the center of the
accented syllable or tone.  Their shapes are given in graphs.  Phrase tags and accent tags
are listed on separate lines.  Slope tags are represented as “ù ”, step to tags as “×”, step by
as “”, and phrase tags by “¦ ”.  In addition, global parameters (i.e., attributes of the set
tag) are given in the first line. Unless noted, slope tags and phrase tags are placed
between words.

4.1. Step tags

The simplest tag, and one that is a good example for how tags interact in Stem-ML, is the
step tag with the to attribute (known here as step to).  This tag places a constraint on the
phrase curve, requesting that the phrase curve must have a certain value at the tag’s
position.  If a phrase contains just a single step to tag, the phrase curve is set to the
specified value, both before and after the tag.  If you now add a second step tag, you will
see the pitch compromise in between.  Each tag fixes the pitch at its location (and on the
side away from its neighbor), but in between, the algorithm produces a smooth
interpolation.

Figure 7 shows three examples of using step to tags. The example includes a small
amount of pdroop to allow the cases to be distinguished.  Absent pdroop, cases 1 and 2
give the same result.
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"Step to" tags
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Figure 7: Effects of the step to tag.    The three lines are generated by
1: one tag: <step strength=10 to=0.5/>   -or-  ?0.5
2: two tags setting the same frequency:  ?0.5  ?0.5 –or-
      <step strength=10 to=0.5/> ... <step strength=10 to=0.5/>, and
3: two tags setting different frequencies:  ?0.5 ?0
    <step strength=10 to=0.5/> ... <step strength=10 to=0/>.

The other form of the step tag, with the by attribute (step by), produces a bona fide step in the
phrase curve.  It makes a change in the pitch, but doesn’t force either side to be any particular
value.
<step by=X strength=”10” /> simply means that the pitch after the tag should be
higher by X than the pitch before.   Normally, you’d fix the pitch on one end of the phrase with
a step to tag.

Figure 8 is an illustration of step by tags. No compromising is necessary in this example,
as none of the constraints imposed on the pitch curve conflict.
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Figure 8: Illustration of step by tags.  Curves are generated by these tags:
Gray: <step to=”0.1”/> ... <step by=”0.3”/> ...<step by=”0.3”/>
            -or-  ?0.5 0.3 0.3
Black: <step to=”0.1”/> ... <step by=”0.3”/>  -or- ?0.1 0.3

More complex variants of the step tag are possible, when both the to and by attributes are
specified.  These allow you to express intermediate cases, where both the absolute
position and the step size are important.  The type attribute controls whether the target
position (“to”, when 1≈type ) or the step size (“by”, when 0≈type ) is more important.
These complex cases are analogous to the stress tag,  §3.4.

Figure 9 is an example showing a complex phrase curve that is approximated with step to
and step by tags.  This is a French sentence Elle t'a rien donné, ta mère? “She didn't give
you anything, your mother?”, with a dramatic incredulous rising intonation on the word
donné starting at 99 centiseconds, followed by a right dislocated , ta mère “your mother”,
which is another rising intonation catching the momentum of the previous rising slope,
riding high near the top of the speaker's pitch range.  The step by tag at 110 centiseconds
raises the phrase curve and supports the second rising accent in the high end of the
speaker’s pitch range. Alternatively, the step up at donné might also be represented by a
pair of step to tags.  We used an early rising accent template for the first word, elle, a
peak accent for the word rien, and identical late rising accents on t'a, donné, and mère.
The accent templates of this example, as well as other natural speech examples, are
manually fit to the data.

Segmental effects cause discrepancies between natural and Stem-ML generated f0 in
some regions of Figure 9. For instance, we see the raising effect of the phone t starting at
57 centiseconds, and the lowering effect of phones r, d, and the final r starting at 70, 85,
and 148 centiseconds respectively. The final drop in f0 (at 150 cs) is perceptually
unimportant, because it co-occurs with low amplitude.  The accent is perceived as a rising
one, so we use a rising template to model the f0 curve.
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Figure 9: The step by tag: raised pitch range in French incredulous question with right dislocation.  See the text for
the tags that generated the model in solid line.

Global parameters:
tag=set; add=1; smooth=0.05; base=200; pdroop=0; adroop=10; range=410;

Accent templates:
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Figure 10: Accent templates used to generate the model in Figure 9.

Prosodic code: The second step tag is placed in the center
of “ne”.

Elle t’a rien donne ta mere?

    ×0.2                 0.8              ¦

 α0.5  β0.4  γ0.4   β1.1     β0.7

4.2. Slope tag

The next tag that is relevant for phrase curves is the “slope” tag.  Slope makes the phrase
curve tilt up or down to the left (forward in time) of the tag (see §2.1).  Slope tags replace
the current value of the slope attribute, so that after the sequence
<slope rate=1/> ... <slope rate=0/>  the slope is zero7.
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Figure 11 shows some applications of the slope tag. We show four curves: a slope
starting at the phrase boundary, one delayed 0.25 s, a slope up followed by a slope down,
and a slope with a small step superposed.  Again, no compromising is necessary.
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step by=0.1

Figure 11: Applications of the slope tag. The tags for each curve (from top to bottom at t=1.5s) are:
                  1: <slope rate=0.8/>  -or- ö0.8@t=0
       2: ... <slope rate=0.8/> ... <step by=0.1/> -or- ö0.8 ?0.1
       3: ... <slope rate=0.8/>  -or- ö0.8@t=0.3
       4: ... <slope rate=0.8/> ... <set slope=-0.1/> -or-  ö0.8  ö-0.1

Figure 12 is an example of English coordinate structure:  “(Several experts) said
increased costs, and lowered chartering rates,...”.  The parallelism in syntactic structure
is echoed in the nearly parallel rising slopes in intonation. We implemented the rising
intonation of the two coordinate phrases with slope rate of 0.13 and 0.15, placed at the
first and the third vertical line, respectively. A low accent template is used on the
unaccented words said and and, both showing up with low pitch. The accents of the rest
of the sentence are uniformly rising, matching the use of the rising phrase curve.
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Figure 12: The slope tag: rising slopes of English coordinate structure.  See the text for the tags that generate the
pitch curve in solid line.

Global parameters:
tag=set; add=1; smooth=0.06; base=135;  range=300; pdroop=0; adroop=6;

Accent templates:

*

*
*
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0.0

Template  β

type=0.5

Figure 13: Accent templates used to generate Figure 12.

Prosodic code: A slope tag (ù ) was placed in the beginning of each clause
to generate the rising pitch movement. The pitch at the beginning of
each clause is controled by a step tag(×).

… said increased costs,   and lowered chartering rates,
  ×0.04                  ¦ ×0.01                           ¦
 ù 0.13                    ù 0.15

   β0.3     α0.5     α0.6     β0.4    α0.3     α0.4      α0.4

A rising slope can also be expressed by a pair of step to tags defining the beginning and
the end of the slope. For example, the following alternative expressions are roughly
equivalent to the step and slope combination used above:

… said increased costs,
  ×0.04                ×0.2

We note that the slope tag’s rate and the pdroop attributes interact and it is possible to
generate an unintuitive  phrase curve, especially when pdroop is big (e.g., greater than 1).

4.3. Pdroop: phrase curve droopiness

Pdroop is a parameter that conveniently represents the systematic decrease in pitch that
often occurs during a phrase.  Common examples are the final phrase in a sentence, after
emphasis, or the initial phrase in a paragraph.  Pdroop operates on the phrase curve,
pulling it down towards the base frequency.  Points near step to tags will be relatively
unaffected, especially if their strength is large, while points farther away will be pulled
towards the base.  The value of pdroop sets the exponential decay rate of the phrase
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curve, so that a step will decay away in 1/pdroop seconds. Thus, one can get a declining
phrase curve by using a nonzero pdroop along with a positive step to at the beginning of
a phrase (shown in Figure 14). Pdroop also sets a limit to pre-planning in the phrase
curve: a step or slope tag becomes largely irrelevant if it is farther than 1/pdroop seconds
away.  Note that pdroop pulls the phrase curve down just as much before a step tag as it
does after, because we assume that the pitch trajectories are pre-planned.

Figure 14 illustrates the effect of pdroop.  The phrase curve is set high in the beginning,
and is pulled down toward the base frequency.
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Figure 14: The effect of pdroop.  The phrase curve is set high at t=0, and is pulled down toward the base frequency
(100 Hz).  The square marks the tag position.
<step to=”0.5” strength=”3”/> <set pdroop=various />

Figure 15 and Figure 16 show Stem-ML fitting of two natural f0 contours with varying
declination slopes (Shih, 2000), which can be approximated with different settings of
pdroop.

Figure 15 is a Chinese sentence with a low tone (tone 3) at 69 centiseconds, a rising tone
(tone 2) at 84 centiseconds, followed by ten high level tones (tone 1). The pitch level of
the high level tones gradually declines. We capture the declination curve with a step to
tag to 0.8 of the pitch range and a pdroop setting of 0.6. The vertical line in the plot
marks the location of the step to tag.
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Figure 15:  The pdroop tag: gradual declination with pdroop=0.6 for a series of Mandarin high level tones. See the
text for the tags that generate the pitch curve (solid line).

Global parameters:
tag=set; add=1;  smooth=0.06; base=175; range=120; adroop=2; pdroop=0.6;

Prosodic code: Numerals 1-4 represent Chinese tones.

Lao3 wang2 jin1 tian1 gang1 gang1 bang1 zhong1 yi1 zheng1 dong1 gua1
“Lao-Wang just help the doctor to steam winter melon today.”

×0.5                  ×0.8                                                                             ¦

0.6 0.9 0.7   0.2 0.2  0.2 0.2 0.2    0.2    0.2 0.2   0.2

Figure 16 has similar tonal composition as Figure 15, but with eleven high level tones.
The high level tones show a steep declination slope. This is captured with a step to to 1.4
of the pitch range and a pdroop setting of 6.

Most of the Stem-ML tags are kept constant between these two examples: The tonal
templates and the strength specifications of all syllables are the same. The variations are
accounted for by the difference in pitch range, the magnitude of the step to tags, and
most importantly, the variation in the pdroop settings.
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Figure 16: The pdroop tag: steep declination with pdroop=6 for a series of Mandarin high level tones which follow
an emphasized word. See the text for the tags that generate the pitch curve in solid line.

Global parameters:
tag=set; add=1;  smooth=0.06; base=190;  range=200; adroop=2;  pdroop=6;

Prosodic code:

Lao3 wang2 jin1 tian1 gang1 gang1 bang1 zhong1 yi1 zheng1 dong1 gua1 zhong1
“Lao-Wang just help the doctor to steam winter melon bowl today.”

×0.5                 ×1.4                                                                                        ¦

0.6 0.9 0.7   0.2 0.2  0.2 0.2 0.2    0.2    0.2 0.2   0.2   0.2
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4.4. The stress tag

The stress tag allows you to accent words or syllables in a very general manner.  You
specify three things: the ideal ‘Platonic’ (Plato, 366 BCE) shape of the accent, which is
the shape it would have without neighbors, and if spoken slowly.  Second, you give the
accent type.  Finally, you specify the strength of the accent.  Strong accents tend to keep
their shape; weak accents tend to be dominated by their neighbors.

Table 2 shows qualitatively how accents interact with their neighbors.

Accent
interactions vs.
strength and
type.

Type ≈ 0 Type ≈ 0.5 Type ≈ 1

Strength >>
neighbor’s
&
Strength >> 1

The accent keeps its
shape precisely.
Neighbors will bend
to accommodate it.

The accent’s shape
and mean pitch are
precisely as
specified.
Neighbors must
adjust.

The accent’s average
pitch is precisely
controlled.  Neighbors
bend or shift to
accommodate.

Strength ≈
neighbor’s

The shape will be a
compromise with the
neighboring accents.
The neighbors will
control average pitch.

The shape and
mean pitch will be
similar to the tag’s
specification, but
both will
compromise with
the neighbors.

The average pitch will
be a compromise with
the neighboring
accents.   The neighbors
will control the shape.

Strength <<
neighbor’s

The accent is relatively weak.  The prosody will be dominated by the
neighboring accents.

Strength >> 1 The speaker is willing to expend substantial effort to make the sound
match the template.  Little smoothing is applied to the accent.

Strength ≈ 1 The pitch curve will be a smoothed version of the accent.

Strength << 1 This accent is unimportant.  The speaker is expending minimal effort,
and the pitch curve is controlled by smoothness and continuity
requirements.

Table 2: Summary of accent interactions.

At the extremes, the accent type parameter separates accents into those where the shape,
(or changes in pitch) are critical, or those where the average pitch is critical.  If type=0,
the shape is critical.  One example might be “the pitch drops by 50 Hz”.  At the other
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extreme, type=1, the shape doesn’t matter, but the average pitch is important.  An
example might be “the pitch is 50 Hz above the phrase curve.”  Intermediate types are
possible, and give you accents that define both a shape and a mean pitch.

4.4.1. Compromises between stress tags - 1

While it is normal to write a phrase curve without conflicting requirements that would
cause the system to compromise, compromises abound when the pitch trajectory
(prosody) is being calculated from stress tags.  It is easy to find situations where the
speaker wants to end one accent low, yet start the next one at a high pitch.  Somehow, the
accents need to be reshaped, or the pitch has to be adjusted.  Stem-ML can do either.

In the following five figures (Figure 17 to Figure 21), we explore the interaction between
two nearby accents/tones.  The first is a level tone with a well-defined pitch.  The second
is a falling tone.  We’ll see in each figure how the pitch curves behave as we adjust the
target pitch of the first tone.  The first figure shows the response of a pure falling tone: it
has no preferred pitch, but has a strongly preferred shape (type = 0).  Each following
figure will have successively stronger pitch preferences and weaker shape preferences for
the falling tone, until in the last figure, where its shape becomes unimportant (type=1).

Second tone is type=0: no preferred pitch
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Figure 17: A falling tone following a level tone.  Note that the resulting pitch curves are parallel, because only the
shape of the second tone is constrained.  The lowest curve runs into the system’s minimum frequency.  The shapes
of the stress tags are shown by the squares.
<stress strength=”4” type=”0.8” shape=”-0.1sY,0.1sY” /> ...
<stress strength=”4” type=”0” shape=”-.2s.3,-.1s.3,0s0,.1s-.1,.2s-.1”/>.  We
generate level tones at different heights by varying Y from –0.1 to 0.5.

Center of level
tone.

Center of
falling tone.
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Second tone is type=0.1: weak pitch preference
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Figure 18: A falling tone with a weak pitch preference following a level tone.  The pitch curves start to bunch up
on the falling tone, as its pitch preference begins to be felt.
< stress ... /> ... <stress type=”0.1” ... /> .

Second tone is falling tone with a strong pitch preference 
(type=0.5)
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Figure 19: The falling tone now has a strong pitch preference.  It defines both its shape and pitch quite rigidly.
Note that when the preceding level tone is low, the pitch now must increase in preparation for the second tone.
< stress ... /> ... <stress type=”0.5” ... /> .
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Second tone has strong pitch preference and weak shape 
preference (type=0.8).
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Figure 20: With type=0.8, the second tone is primarily defined by its pitch.  The shape is now relatively
unimportant, but the tag still manages to force the pitch to decline near its midpoint.  When the first tone has a low
pitch, the pitch curve now needs to rise strongly in between the two tones, so that the pitch will be right at the
center of the second tone.

Second tone defined only by it's position (type=1).
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Figure 21: In this last figure in the sequence, the second tone is defined completely by its pitch.  The shape of the
falling tone becomes irrelevant for type=1.

4.4.2. Compromises between  stress tags – 2

If we bring nearby accents together, we can get another example of compromises
between tags.  Note that Stem-ML is not an additive model: the result of putting two
accents on top of each other is not the sum of the two accents.  It corresponds to a single
accent of the same shape and type, but twice the strength.  From a practical TTS point of
view, the system avoids putting undesirable emphasis in between two nearby accents.
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Stem-ML can simulate the combination of two laryngeal gestures in Munhall and
Löfqvist (1992) without the problem of a summation model.  For the laryngeal opening
gestures studied in that paper, simple summation of the two gestures predicts that the
larynx will be open further as the two gestures overlap.  On the contrary, they observe
that the maximum opening is nearly constant, a natural result for a Stem-ML model.
Figure 22 shows the result of two identical accents as they are brought progressively
closer together (one accent comes in from the right, the other is stationary at 0.83s).  The
final, highest peak shows the two accents sitting on top of one another.
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Figure 22: Interaction of two accents.
<stress strength=”4” shape=”-.15s0,-.1s0,-.05s.1,0s.3,.05s.1,.1s0,.15s0” type=”0.5”/>
…  <stress strength=”4” shape=(see above) type=”0.5”/>

4.5. The strength of accents

In Stem-ML, all accents have a strength parameter, which is intended to correlate with
the linguistic strength of the word.  In general, strong accents will keep their shapes,
while weak accents will be dominated by their neighbors.  Figure 23 shows this effect by
simulating three accents: a strong high tone, then a falling tone of varying strength, then a
weak high tone.  When the falling tone is very weak, it is completely dominated by its
neighbors, and is almost invisible.  On the other hand, when it is strong, it retains its
shape, pushing down the weaker high tone.
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A falling tone sandwitched between two high level tones.
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Figure 23: The interactions between three accents as the strength of the middle one (a low-falling tone) is varied.
The low-falling tone is unimportant with zero strength (black, topmost curve), and gradually assumes its ideal
shape as its strength is increased from 0 to 4.  Its neighbor is increasingly perturbed.
<stress strength=”4” type=”0.3” shape=”-0.1s0.3,0.1s0.3” /> ...
<stress strength=various type=”0.5” shape=”-.15s.2,-.1s.2,0s0,.1s-.2,.15s-.2”/>
... <stress strength=”2.5” type=”0.3” shape=”-0.1s0.3,0.1s0.3”/>

In the next two examples, we show examples of tone interactions in actual speech data.
Figure 24 and Figure 26 illustrate the variations in accent strength in Mandarin. The two
examples are two renditions of the same Chinese word zang1 mao2-yi1 “dirty sweater”,
where the tonal combination is high level, rising, and high level.  The rising tone of the
middle syllable may be realized weakly, as in Figure 24, or strongly, as in Figure 26.

The pitch discrepancies in the zang regions between natural and generated f0 in both
figures are consistent with the segmental effect of the phone z, an alveolar affricate,
which raises f0 during the beginning section of the vowel.
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Figure 24: Strength of accents: Mandarin example with a weak middle syllable. See the text for the tags that
generate the pitch curve in solid line.

Global parameters:
tag=set; add=1; smooth=0.05; base=130;  range=250; pdroop=1; adroop=5;

Accent templates:
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Figure 25: Chinese tone templates used to generate Figure 24 as well as the models in the following Chinese
examples.

Prosodic code: Each syllable in the Chinese example has a tone template that is lexically determined. The
templates are placed in the center of the syllable

zang1 mao2 yi1    “dirty sweater”
×0.3                  ¦

0.75 0.55 0.5

The Stem-ML tags used to generate Figure 26 are identical to the example above, except
for the strength parameters of the syllables.
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Figure 26: Strength of accents: Mandarin example with a strong middle syllable. See the text for the tags that
generate the pitch curve in solid line

Global parameters:
tag=set; add=1;  smooth=0.05; base=130; range=250; pdroop=1; adroop=5;

Prosodic Code:

zang1 mao2 yi1     “dirty sweater”
×0.3                 ¦

0.9 0.8 0.0

4.6. The smooth attribute: muscle response time.

The final parameter critical for defining accents and their interactions is the smooth
attribute, expressed in seconds.  Normally, it should be set to the time it takes the speaker
to change pitch (i.e., a voluntary pitch step in the middle of an extended vowel).  Figure
27 shows the effects of smoothing time on the same accent. The smooth attribute varies
from 0.04 to 0.2.
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Figure 27: An accent with different smoothing times (increasing downward at t=0.5 s or upwards at t=0.3
s).  The open squares mark the specified shape of the accent.  The curve with smooth=0.2 is substantially
over-smoothed, relative to the shape of the accent.
<set smooth=various />
<stress strength=”4” shape=”-.15s0,-.1s0,-.05s.1,0s.3,.05s.1,.1s0,.15s0”
type=”.5” />

4.7. Adroop: pitch trajectory droops toward the phrase curve.

The adroop parameter is closely analogous to pdroop, except that adroop pulls the pitch
trajectory toward the phrase curve.  It allows you to limit the amount of pre-planning that
Stem-ML assumes.  Accents farther than 1/adroop seconds away from a given point will
have little effect on the local pitch trajectory8.  Figure 28 illustrates the effect of adroop
attribute.
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Figure 28: Effect of the adroop tag.  Here, the pitch curve is a constant 100 Hz.  The squares show the accent’s
defined shape.
<set adroop=various/> <set smooth=”.08”/> <step to=”0” strength=”3”/>...
<stress shape=”-.1s0,-.05s0,.05s.3,.1s.3” strength=”3” type=”.5”/>
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4.8. The phrase tag: limiting pre-planning.

Phrase tags mark boundaries where pre-planning stops; they are normally placed at
phrase boundaries.  Stem-ML assumes that people are capable of planning their prosody a
few syllables in advance of its actual production.  This pre-planning lets the speaker
smoothly compromise between difficult tone combinations and also helps him or her
avoid running above or below their comfortable pitch range.  Phrase tags allow you to
control the scope of advance planning.

In Figure 29, we see how the phrase boundary tag prevents changes in the falling tone
from affecting the region before the phrase tag.  Figure 19 shows a contrasting example
where there is no phrase tag, thus the effects of the second tone are allowed to reach well
backwards.  The phrase boundary allows the section from 0 to 0.42s to be controlled
exclusively by the first tag.  Without the phrase tag, the entire curve would depend on
the shape and size of the falling tone.
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Figure 29: Effect of a phrase tag.  The phrase tag acts as a one-way wall, allowing tags before it to affect the future,
but preventing future tags from affecting the past. This figure shows a level tone, a phrase boundary, followed by a
tone of varying amplitude.  The region before 0.42s is completely unaffected by changes in the falling tone.
<stress strength=”4” type=”0.8” shape=”-0.1s0.3,0.1s0.3” />
… <phrase> …
<stress strength=”4” type=”0.1” shape=various /> .

4.9. Jitter and jittercut: random variation

People will not say the same sentence identically in separate trials.  From a TTS point of
view, the jitter and jittercut tags can be used to introduce some random variation into the
pitch trajectory, so that repeated phrases will not sound mechanically identical.  The
random pitch curves are 1/f noise, with a high frequency cutoff set by the glottal
musculature (i.e., the value of the smooth parameter is used), and a low frequency cutoff
set by the jittercut parameter.  Setting jittercut to the mean word length will give you
random accents inside of words, but little variation on the scale of a phrase.  On the other

Level tone
Falling tone
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hand, setting jittercut to the phrase length will give you a random phrase curve, with
relatively little variation inside words.

Effect of jittercut
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Figure 30: Random pitch trajectories from jittercut=0.1s, 0.3s, 1s (from bottom to top).  The curves are vertically
shifted for display clarity.
<set jitter=”0.1” jittercut=various/>

4.10. The add attribute

The most noticeable effect of the add setting is that it controls how the f0 excursion of an
accent changes, depending on the phrase curve.  For small add<1, a given stress tag will
make a larger f0 change if it rides on top of a high area of the phrase curve than in a low
region.   For add=1, the size of an accent (measured as f0, not perceptually), is
independent of the value of the phrase curve.

This effect can be seen in Figure 31, which shows three pairs of pitch trajectories, with
different values of the add parameter.  Each pair displays the effect of identical accents:
one member of the pair has the accents on top of a phrase curve, the other member just
shows the phrase curve.  The top pair assumes add=0, to give a logarithmic relationship
between frequency and perceived pitch: when we command the system to provide a
uniform slope in pitch, the frequency increases faster than linearly.  As a consequence,
small accents that ride on top of a high phrase curve give larger frequency excursions.
The bottom pair assumes add=1, so that f(x)=x, and the frequency increases linearly.  In
this case, the size of the accents is independent of their position on the phrase curve.
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Figure 31: Pitch trajectories with different values of add=0 (top), 0.5 (middle), 1 (bottom).  We show each value
both with and without a pair of identical stress tags.
<set add=various /> ... < slope rate=”1” />, with or without a pair of
<stress strength=”3” type=”0.5” shape=”-0.1s0,0.05s0,0s0.1,0.05s0,0.1s0” />
tags.

We can see how the add attribute can describe what is important in speech
communication by showing three examples:

First, if perceptual effects are most important, and one’s model of pitch generation
assumes that the speaker adjusts accent sizes so that they sound “good”, it may be
appropriate to compare a pitch change to the smallest detectable frequency change (DL)
[note 9].  These DL values increase with frequency, and Wier et al. (1977) have fit their
frequency dependence as feDL ∝ , where f is the pitch.  In our model here, such a
dependence corresponds to some relationship between accent strength and frequency that
is intermediate between linear and exponential, roughly, add=0.5.

As a second example, if the speaker does not adapt him/herself for the listener’s
convenience, one could get values of add>1.  For instance, if muscle tensions are
assumed to add, 2

1

0 tensionf ≈  and 2≈add .

As a final example, Fujisaki has used a logarithmic scale for f0 contours, based on a
model where muscle extensions are specified by neural control signals, combined with a
vocal fold stiffness that increases exponentially with extension. Such behavior
corresponds to add=0 in our model.
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5. Using Stem-ML to build a model of intonation

Stem-ML is designed to be flexible and theory neutral. A consequence of this design is
that there are very few inherent constraints that restrict the usage and the combination of
Stem-ML tags. The same pitch contour can often be approximated many different ways,
using different sets of tags, some of which may well be linguistically unreasonable.

Stem-ML can be theory-neutral because it is an over-complete representation of f0.
Because there are many ways to use Stem-ML to represent a given pitch curve, many
different theories of prosody can be mapped onto Stem-ML.  This means that one must
define a language-specific layer on top of Stem-ML.  For instance, one must decide
whether or not to use a phrase curve, and decide whether accents are best associated with
words or syllables, among other choices.  If one does not restrict Stem-ML’s flexibility,
there will be many equivalently good representations of any given utterance, and further
analysis may become impractical.

5.1. Multiple interpretations of data

One must be careful if one uses automated methods to learn Stem-ML tags.  To illustrate
the potential pitfalls, we show in Figure 32 how one of the earlier examples (Figure 15)
can be accounted for by a totally different combination of Stem-ML tags with a pdroop

value of 18 −s , which could suggest a very steep declination rate.  To avoid venturing too
far into the wrong track, the model building has to be constrained to be consistent across
a reasonable variety of data.  Lessons learned from controlled experiments may help us to
find the right model, especially if one can link parameter variations to experimental
conditions. Evaluating results on testing data helps to avoid over-fitting problems.
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Figure 32: Alternative tag set for Figure 15. The large value of  pdroop suggests a steep decline. The usage is
problematic since the data clearly suggests a gradual declination slope.
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Global parameters:
tag=set; add=0.5; smooth=0.06; base=225;  range=180; adroop=2; pdroop=8;

Prosodic code:

Lao3 wang2 jin1 tian1 gang1 gang1 bang1 zhong1 yi1 zheng1 dong1 gua1
“Lao-Wang just help the doctor to steam winter melon today.”

×0.5                 ×1.0                                                                               ¦

0.5 0.5 0.5   0.2 0.2  0.2 0.2 0.2    0.2    0.2 0.2   0.2

5.2. Language-specific constraints on Stem-ML

As an example of a set of language-specific set of constraints on Stem-ML which was
successfully used in automatic fitting of Mandarin (Kochanski, Shih and Jing 2001a,
2001b), we use the following rules:

• Just five templates (tones 1-4 and a neutral tone) generate all surface tone shapes.
The templates are stretched (in time) and scaled (in pitch) for each syllable.

• Pitch scaling of templates and Stem-ML strength are controlled by the same
parameter.  Thus, we assume that as syllables become stronger they are both
articulated more carefully and expressed with a wider pitch range.

• Syllable strengths are derived from a word-strength and a metrical pattern for the
word.  Words with the same number of syllables share the same metrical pattern.

• Stem-ML phrase tags were placed at each pause of 150 ms or more.
• Phrase curves are straight-line and shared.
• All utterances share the same Stem-ML smooth, range, and base parameters.

If Stem-ML is to be used for human labeling of speech, one must create labeling
standards equivalent to the ToBI annotation rules (Beckman and Ayer, 1997).  The
standards must specify what tags (or combination of tags) can be used in what
circumstances.  If these standards are designed properly, they can eliminate ambiguity
without seriously compromising Stem-ML’s ability to represent the pitch contour.  These
rules or standards then become part of the complete language model that connects
linguistic annotations to acoustic data.

5.3. Example of building a language model.

As a concrete example of how one might model a language, we will describe a simple
model of a small corpus of Mandarin Chinese words, similar to that described in
Kochanski and Shih (2000).

The first step in building the language model is deciding how to represent the relevant
linguistic features.  In this case, there are relatively few options: Mandarin is known to be
a tonal language, with tones associated with syllables.  We choose to model tones with
stress tags, associating one per syllable.  There are four classes of stress tags, one for each
tone.



Prosody Modeling with Soft Templates, Kochanski and Shih.                                      50

In order to keep the model as simple as possible, we will assume that each stress tag is
generated by stretching a corresponding template so the length of the template is
proportional to the length of the syllable10.   The assumption of four tone templates is
crucial, as it allows a very compact representation of the language, since the tone shapes
only have to be specified once, not once for each syllable.  Tag stretching is defined by
two parameters per tone class, one for the fractional length and one for an offset between
the syllable center and the template.  The shape of the template is defined by five
parameters per tone class.  A more detailed description of shape seems unnecessary,
based on an inspection of the data.  We also allocate two parameters per tone class to
scale and shift (in pitch) tone templates as a function of strength.

We put free parameters on the add, smooth, base, adroop and pdroop settings, for a total
of 5 parameters.  These are constant across all utterances, and characterize things like the
speaker’s mean f0, typical declination rate and muscle response time.

In this example, we allow each utterance to have its own straight-line phrase curve,
accounting for two parameters per utterance.  The phrase curves are implemented with
step to and slope tags.  These phrase curves were intended to capture any systematic
declination in the pitch.

Finally, each syllable has a parameter that sets the strength of the associated stress tag.
In a larger database, these strength parameters would be the most numerous parameters,
and also the most important, because they would be the only ones which could capture
local prosodic effects.   In this small database, the situation is less clear cut because there
are about as many parameters that define the tone shapes (44) as parameters that set the
strength of individual tones (38).

The data was obtained from a female native Mandarin speaker11.  Utterances were
isolated one and two syllable words, spoken in a laboratory setting.  We estimated f0 with
the get_f0 program of ESPS/Waves (Talkin et al., 1996), and manually checked for
voicing errors and locations where f0 might be estimated incorrectly.  Next, we fit the
model to the data by varying the model’s parameters to minimize the RMS error between
the data and the model, evaluated over voiced regions.    We used an optimizer that was
used in Tyson and Kochanski (1998).

In unvoiced regions, the data do not constrain f0*.  This lack of glottal oscillation does not
imply that 0*

0 =f , it merely means that the amplitude of oscillation is zero.  Specifically,
the vocal folds can be tensed and ready to vibrate, even in unvoiced regions.  Unvoiced
regions can be generated without changing vocal fold tension, by reducing the subglottal
pressure, by pressing the folds together, by holding them wide apart, or by closing the
upper vocal tract.  When we fit models to data, we constrain the models only with the
voiced regions, leaving f0* in the unvoiced regions free.

The resulting fit is shown in Figure 33.  The entire corpus is shown.

A discussion of the resulting parameter values is not really valuable, since the database is
so small.  Instead, we refer readers to Kochanski, Shih and Jing (2001a, 2001b) for a
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detailed analysis of a larger corpus.  However, we will note a few effects that are
characteristic of Stem-ML models:

• The average pitch of tones depends on their context.  This occurs because the tones
need to maintain their shape (at least approximately), and because they need to make
smooth connections to their neighbors (because of muscle physiology).  This effect
can be seen in the average height of tone 4, especially comparing the isolated tone to
the (4,1) pair.  Likewise, tone 1 gets pushed down when preceded by a tone 4.

• Coarticulation effects can substantially distort tone shapes.  Note, for instance, the
compression of the pitch range of tone 2 in the (4,2) pair relative to isolated
examples.  Similarly, the “high level” tone 1 can become significantly tilted in the
(4,1) or (2,1) pairs.
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Figure 33: Data vs. Stem-ML model for a small Mandarin corpus.  Syllable centers are marked with vertical
dashed lines, and the numbers in outline font identify the tones.  The top row and leftmost column show isolated
single syllables, while the remainder of the figure shows two syllable utterances.  The modeled f0 curves are all
derived from the same four Stem-ML templates.  Note that the model captures much of the coarticulation between
tones: see for instance the change in tone 4’s mean f0 from an isolated tone to the 4,1 tone pair.
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6. APPENDIX: Tag definitions

We will specify tags in XML format here.  In this description, literal strings are quoted,
then (following regular expression notation), '?' marks optional tokens, '*' marks zero or
more occurrences of a token, and '+' marks one or more occurrences.  Options are shown
with '|', and parentheses and newlines are used for grouping.  Tags are defined in the
XML namespace http://www.bell-labs.com/project/tts/stem-names .
See http://www.w3.org/XML for information describing XML, including namespaces.
Other information on Stem-ML may be found at
http://prosody.multimedia.bell-labs.com .

6.1. Tag grammar

Tag = “<” tagname AttValue* “/>”

Example:

<set base=“200” />
# Set base frequency to 200 Hz.

Each tag is composed of two parts: a tag name, and a set of attribute-value pairs that
control the details of what happens.  All of the tags are ‘point’ tags, which are self-
closing.  We implement Stem-ML with point tags to allow it to mix better with other
mark-up information.  Non-self-closing tags must be properly nested in XML, and it is
not obvious that prosodic markup would nest well with syntactic or semantic mark-up.

Tagname = “set” | “step” | “slope” | “stress” | “phrase”

Lists of legal attributes can be found in sections 3.1-3.5.

The shape attribute of the stress tag has a fairly complex syntax.   You specify the shape
of a template as a set of (time, pitch) points.

Shape = shape_from_points,

Shape_from_points = (point “,”)* point

A point in the shape argument of the stress tag follows the syntax:

point = float ( “s” | “m” | “p” | “y” | “w” ) value.

It specifies a point on the accent curve as a (time, frequency) pair  (frequency is
expressed as a fraction of the speaker's range).    Time is measured in seconds (s),
milliseconds (m), phonemes (p), syllables (y), or words (w).  One does not need to
specify the accent curves too finely, as the resulting pitch curve will be smooth.  The
following figure shows an example:
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< stress strength=10 type=0.5
shape=-0.3s0,-0.25s0,-0.15s0.3,0s0.5,0.15s0,0.25s0 />
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Figure 34: Sample stress tag and resulting pitch trajectory.

Stem-ML doesn’t restrict itself to predicting f0*.  Many values can be vector quantities,
with components corresponding to amplitude, glottalization, face motions, or whatnot.

value = float | ( float letter )+

mvalue = float | ( float letter letter )+

The letter in a value tells you what component of prosody it is associated with, if you are
controlling more than one component of prosody (e.g., f0* and eyebrow position).  The
two letters in an mvalue correspond to two indices in a matrix mapping from perceptual
parameters (e.g., ‘emphasis’) to observable output values (e.g., ‘f0*’ or ‘subglottal
pressure’) [see §2.4].  A value or mvalue can be a single float, for a simple system that
predicts one-component prosody, like pitch.

6.2. Tag grammar: motions

In most TTS implementations, the binary equivalent of Stem-ML tags are inserted, in the
appropriate places, into a memory structure that describes the utterance.  The tags are
built and inserted by the linguistic modeling component of the TTS system, based on
lexical properties and syntactic information.  However, if Stem-ML is used on a serial
data stream, it is convenient to place tags between words, and shift the accents into the
correct position.  Stem-ML allows that with the move attribute, which is legal as part of
all tags.

AttValue = position | other_attributes

position = “move” “=” motion+

motion = (float | “b” | “c” | “e”) ( “r” | “w” | “y” | “p”
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| “m” | “s”) | “*”

The system evaluates motions in a left-to-right order.  The position is modeled as a cursor
that starts at the beginning of the first phoneme following the tag12. You can specify
motions in units of phrases (r), words (w), syllables (y), phonemes (p), milliseconds (m),
or seconds (s).  Phrases and words can be useful units if the tags are congregated at the
beginnings of phrases.

• Motions specified in phrases skip over any pauses between phrases.
• Motions specified in words skip over any pauses between words.
• Moves specified in syllables treat a pause as 1 syllable.
• Motions specified in phonemes treat a pause as 1 phoneme.
• Using a ‘b’, ‘c’, or ‘e’ as a motion will move the cursor to the nearest beginning,

center or end of a phrase, word, syllable, or phoneme.  The notation move=”er” is a
convenient way to place a tag at the end of a phrase (e.g., for a boundary tone).

• Moves specified in seconds just move the cursor that number of seconds.
• The motion "*" (stressed) moves to the center of the next stressed syllable.
• If two tags are moved to the same position, the tags are evaluated in order of their

appearance in the input text.

Negative moves are allowed, but the cursor cannot be moved out of the phrase13.
Example:

<step move=“*0.5y” by=“1” />
# Put a step in the pitch curve, with the steepest
part of the step 0.5 syllable after the center of the
first stressed syllable after the tag.
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End notes
                                                  
1 We use the term “prosody” broadly, meaning a time series of speech information that’s not predictable
from a reasonable window (i.e. word-sized or sentence-sized) applied to the phoneme sequence.  This
could include pitch, amplitude, and gestures.  The tag set also applies to tone shapes in tone
languages, so we bring them under the umbrella term “prosody.”
2 In this paper, a “phrase” is defined to be the interval between two Stem-ML phrase tags.  Normally, a
Stem-ML phrase would be associated with an utterance, intonational phrase, or breath group, but the
precise association could vary from language to language or from theory to theory.
3 These jumps are occasional discontinuous transitions from one mode of oscillation to another, such
as modal speech to falsetto, or period doubling during glottalization.  For a review of the properties of
nonlinear oscillators, see Pipes (1970); Moon and Francis (1987); Ogorzalek and Maciej (1997).
4 For instance, you should not assume that there must be one stress tag per accent.   The best
representation may differ from language to language.  Stem-ML allows you to use stress tags for each
syllable, each word, or in arbitrary locations with arbitrary scopes.  As another example, step tags need
not be associated with phrases or sentences; they could be used to mark syllable-by syllable prosody.
5 Accents that extend outside a phrase are truncated at the phrase boundary.
6 Generally, an mvalue can contain a matrix (see §6.1).  By default, however, it is interpreted as a
single floating point number that controls the pitch range (i.e., by default, you specify the ‘eF’
component).  We define range as a matrix to cleanly express correlations among various aspects of
prosody.  For example, pitch and amplitude are often correlated, and likewise the mouth tends to be
open wider for high amplitude speech.  These correlations are expressed as off-diagonal elements in
the matrix.  Use of a matrix here also gives the user the ability to write tags in terms of more linguistic
concepts like ‘emphasis’, or ‘suspicion’, and letting the system map to observables like ‘f0*’, ‘amplitude’,
and ‘mouth opening’.  See Maekawa (1998).
7 Note that the strength is not specified.   The slope tag changes the continuity equations, which always
have a strength of 1.
8 Recall that Stem-ML also explicitly limits look ahead pre-planning to a single phrase, so setting
adroop=0 is usually little different from e.g., adroop=0.3.
9 This is the frequency difference limen (DL), loosely called the “just noticeable difference” (JND).  It is
measured by comparing the pitch of pairs of tone bursts.  See Moore (1989, pp. 158ff).
10 The template is stretched to cover the entire syllable, including unvoiced consonants.
11 C. Shih, one of the authors.  Data was recorded in 1997, well in advance of any work on this model.
12 Silence doesn’t count.
13 The Bell Labs TTS system will actually allow you 100 ms of leeway outside a phrase.  By definition,
this 100ms leeway also corresponds to 1 phoneme, 1 syllable, 1 word, or 0.1 phrases.


