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Abstract

This paper presents a mathematical description of style in speech and
singing. These styles are represented as a set of portable prosodic features
along with a set of rules to choose where the features are to be applied.

Speakers and singers make creative choices to express their personal
style, which may involve specific accent shapes, phrase curves, or (sim-
ilarly) musical embellishment. Therefore a quantitative model of style
needs to support unconstrained accent and phrase curve description, and
to solve potential conflicts that arise from this freedom.

Our current implementation modifies two acoustic parameters: pitch
and loudness. We use an articulator-based model, Stem-ML, to resolve
conflicts between intended accents or embellishments and their environ-
ment. We present several examples to illustrate the modeling of accents
and phrase curves, as well as the usefulness of style/content separation,
and the similarity between speech and music.

1 Introduction

The sense of a style can be expressed in terms of recurrent, salient, features.
These salient features are often rare relative to a random sampling of speech
or song, or are distributed in atypical patterns. The features are not normally
placed arbitrarily, but instead have a close relationship to the underlying content
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and structure. This relationship can be expressed by saying there are a set of
rules which specify where to place the salient features, given the underlying
content and structure.

Matching a style does not require everything to be similar, only the salient
features and their patterns of use. For instance, an impersonator or comedian
can deliver a stunning performance by dramatizing the most salient features
of a politician’s speaking style without actually duplicating the speech of the
person he/she is impersonating.

The feature/location description of style is similar to that presented in
[Bloch, 1953, p. 42], and is applicable to a broad range of speech, art and music.
For example, story-telling styles can be described at a high level in terms of
features and location rules:

One stylistic device in this tale, employed as a connective be-
tween the episodes. . . is the direct question addressed to the audi-
ence. . . [Dorson, 1960]

Here we have a style defined by a feature (“direct question”) and the location
(“connective between the episodes”). Or, describing a style at a more detailed,
phonetic level:

The humor of dialect is present throughout. Instances are the use
of aspirated h’s before consonants,. . . [Dorson, 1960].

Prosodically, much of the style of a speaker can be expressed in terms of
features in f0, amplitude, spectral tilt, and duration [Murray and Arnott, 1993,
Higuchi et al., 1997, Schroder, 2001]. In this paper, we are concerned with low-
level prosodic styles that can be implemented fairly directly in terms of acoustic
parameters such as f0 and amplitude. For example, for speech, this paper
discusses the detailed rendition of the intonation of a phrase after the words
have been chosen. For music, we model performance factors that are not part
of the musical score.

We treat prosody and music together because it is desirable to have a unified
model. The existence of intermediate vocal forms between speech and singing
implies that speech, singing, and intermediate forms should all be treated by
variants on the same model. Pragmatically, a unified model also allows us to
model both speech and singing using the same algorithms and similar parame-
ters. It also allows us to model mixtures of song and speech.

Our goal is to present some techniques that provide a mathematical de-
scription of style in speech and singing. The techniques allow us to separate
recurrent, salient features that define a style from the textual content, and then
later to place them where needed when speech or song is synthesized.

Expression of style is a creative process where speakers and singers introduce
a wide range of individualized prosodic modifications. We find it useful to have
modeling support for both local and global style features. We review and discuss
the prosody representation issues in section 2.
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The prosodic model needs to have the flexibility to handle unconstrained
style variations, and must resolve any potential conflicts. We discuss the math-
ematical basis of the model in section 3, where we allow unconstrained repre-
sentation of accent and phrase curve, and resolve potential conflicts with an
articulatory-based model. Some of the salient features are local, which we will
capture with the Stem-ML shape tag (section 3.2). Some other features involve
changes over a broad scope, such as an entire phrase of speech, which we capture
with the Stem-ML step to tag. We then follow with case studies presented in
section 4.

The generated f0 and amplitude contours are used in a text-to-speech sys-
tem to synthesize speech and songs. In the current implementation, amplitude
modulation is applied at the output of the TTS system.

2 Strategies for Representing Intonation

In both singing and speech, there are strong arguments for representing pitch as
a set of accents or embellishments that can be placed in arbitrary combinations
on top of a background. In music, we treat the score as one component, and
embellishments as another. Thus, a performance is treated as beginning with a
mechanical, precise, naive interpretation of the score, which is then transformed
to a professional, artistic performance by adding embellishments and adjusting
duration. In speech we treat the phrase curve as one component, and accents
as another. The phrase curve describes the larger structures, and depends pri-
marily on how the text is broken up into phrases by pauses, while accents are
associated with particular words. We draw an analogy between speech and mu-
sic by modeling musical embellishments in the same way as accents in speech,
and treating the phrase curve in the same way as the mechanical melody derived
directly from a musical score. In both music and speech, we wish to be able to
describe enough detail to convey performance styles.

Figure 1 shows the f0 trace of phrases from the speech “I have a dream”
delivered by Dr. Martin Luther King Jr. A dramatic pitch rise consistently
marks the beginning of the phrase and an equally dramatic pitch fall marks
the end. The middle section of the phrase is sustained on a high pitch level.
We suggest that the general shape of this phrase curve is the signature style of
Martin Luther King Jr. The pitch profile is found in many phrases in Martin
Luther King’s speech, even though the phrases differ in textual content, syn-
tactic structure, and length. On top of the phrase curve, one can identify the
pitch movement due to accents associated with words. To capture the details
it is desirable to recognize both the phrasal and accent components and model
them accordingly.

Fujisaki’s model [Fujisaki, 1983, Fujisaki, 1988] treats surface sentence in-
tonation as the combination of two components: phrase commands and accent
commands. These commands are filtered by the muscle’s time response (which is
assumed to be a time-independent kernel), and added in the log scale to yield the
surface pitch trajectory. His phrase command is modeled after the phenomenon
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Figure 1: Phrasal f0 profiles from the speech of Martin Luther King Jr.

of declination, which is most suitable for declarative sentences. To describe a
phrase curve that deviates from the declination shape, one needs to use extra
pulses that are not easily linked to linguistic attributes. Later models such as
[van Santen and Möbius, 2000] also have a rigid view of the phrase curve, allow-
ing few possibilities for the shape of phrase curve in the implementation. We see
a need to develop this idea further, both to include the capability to implement
unrestricted variations of the phrase curves in speech, and to describe music
scores.

In contrast to the above models which build a f0 curve by superimposing
multiple components, there is also a tradition of single-component models for f0

[Liberman and Pierrehumbert, 1984, Taylor, 2000, Hirst et al., 2000], that do
not decompose it into phrase curves and accents. Under this view, all pitch
movement in a sentence is accounted for by a linear string of accents. Pitch
movement as shown in Figure 1 will then be represented in the standard ToBI
transcription convention [Silverman et al., 1992] as having a strong rising ac-
cent (L*+H) near the beginning, a strong falling accent (H*+L) near the end,
followed by a phrase accent (L-) and a boundary tone (L%). This transcription
assumes that all medial words are de-accented, and the high pitch plateau is a
result of pitch interpolation. This is fine as a first approximation, but one can
hear pitch movements in this section which are due to word accents, and these
word accents cannot be captured in a ToBI transcription that shows the phrasal
structure. We note that ToBI doesn’t begin to provide a useful transcription of
music.
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Multi-component modeling of music is valuable because it allows us to cap-
ture the transient nature of embellishments, adding, deleting, and moving them
independently of the musical scores. One may argue that embellishment can
be expanded and written into music scores, therefore rendering the two com-
ponents as one, but once a embellishment is turned into a sequence of notes,
one loses the distinction between melody and embellishment. This restricts the
ability to change performance styles.

The need for multi-component modeling for speech is accepted by some
recent works that incorporate pitch range modeling into the ToBI framework
[Jilka et al., 1999, Möhler and Mayer, 2001], by relaxing the strictly linear se-
quence view of intonation modeling. There are implementation constraints in
these works, allowing uniform compression or expansion of the pitch range across
the whole intonation phrase. This kind of approach will not work cleanly for
King’s speech, as the wide swings of the rise and fall at the edges of a phrase
are closely related to the compressed pitch range in the center of each phrase.

If we set our goal to be capturing personal styles by modeling music embel-
lishment and speech accents, traditional techniques of accent modeling using a
fixed inventory of pre-defined accents [Anderson et al., 1984, Jilka et al., 1999]
will not be sufficient. So, we propose a model where there is no restriction on
accent shape, and allow the user to define accent shapes as they see fit.

Unrestricted accent shapes, combined with the possibility that accents can
be placed anywhere opens up the possibility of conflicting requests. What would
happen if at a given time, one accent wants to be high and its neighbor wants
to be low? What if accents overlap?

In the following sections, we first explain how to describe prosodic features
with Stem-ML, a prosody description language that offers the flexibility needed
to control accent shapes, phrasal pitch contours and amplitude profiles. We
explain the mathematical basis of resolving accent conflicts. We then show
examples of how to use Stem-ML on speech and music.

We start by describing a phrase from Dinah Shore’s singing to illustrate
the procedure of annotation, automatic fitting and generation. We then dis-
cuss the modeling of amplitude profile, phrase curve, and accents. Simi-
lar features can be used to support other stylistic variations and emotional
speech [Monaghan and Ladd, 1991, Abe, 1997, Cahn, 1998]. Our singing syn-
thesis focuses on style and performance rules rather than on voice quality
[Bennett and Rodet, 1991, Perry, 1991, Macon et al., 1997]. Note that this pa-
per is an expanded version of [Shih and Kochanski, 2001].

3 Describing Prosody with Stem-ML

In this paper, the control of pitch and amplitude in speech and song
is achieved by using Stem-ML tags (Soft TEMplate Mark-up Language)
[Kochanski and Shih, 2000, Kochanski and Shih, 2003, Kochanski et al., 2003].
Stem-ML provides prosody mark-up tags that can be correlated with linguistic
features, and which have approximately local effects on acoustic parameters.
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The tags are mathematically defined, along with an algorithm for translating
tags into quantitative prosody. The system is designed to be language indepen-
dent, and furthermore, it can be used effectively for both speech and music.

3.1 Background

We rely heavily on two of the Stem-ML features to describe styles in this paper.
First, Stem-ML allows the separation of local (accent templates) and non-local
(phrasal) components of intonation. One of the phrase level tags, step to (m),
sets the pitch to a specified value (interpolating between step to tags, as needed).
When it is described by a sequence of step to tags, the phrase curve is a piece-
wise linear function. We use this method to describe both Martin Luther King’s
phrase curve, and notes in music.

Secondly, Stem-ML separates the placement of accents from their detailed
shape. Any accent template can be inserted at any point, without much consid-
eration of the environment, because Stem-ML calculates coarticulation effects
between neighboring accents and between accents and the phrase curve. This
feature gives users the freedom to write templates to describe accent shapes of
different languages as well as variations within the same language. We write
speaker-specific accent templates for speech, and embellishment templates for
music. Additionally, it allows the heuristic rules for accent placement to be
simple and clean, because the rules do not have to work around limitations
concerning which accents can follow what. From a linguistic point of view, the
realism and flexibility of the phonetics allows for a simpler phonology.

Some combinations of accent and embellishment templates may conflict or be
impossibly difficult to realize precisely; Stem-ML accepts conflicting specifica-
tions and returns a smooth surface realization that best satisfies all constraints.

The muscle motions that control prosody are smooth (i.e. they have finite
first and second time derivatives) because muscles are physical objects and can-
not accelerate instantaneously (c.f. [Huxley, 1957]). We observe that when a
section of speech material is unimportant, the speaker may not expend much
effort to realize the targets [Lindblom, 1963, Shih and Kochanski, 2000]. In gen-
eral, the speaker is simultaneously trying to do several incompatible things: He
wants to carefully produce the correct pitch contour so that the listener will
understand. He is forced (by his own muscles) to generate a smooth pitch con-
tour. Finally, he generally wants to execute the speech with minimum effort.
Our model recognizes that sometimes one goal wins, sometimes the other, de-
pending on the relative importance of the goals, but typically the result is a
compromise. Loosely speaking, we assume that the speaker balances the effort
required to speak against the possibility of being misunderstood.

3.2 Mathematical Definition

We start out by assuming that speakers and singers have in their mind a set of
ideal targets which they are trying to communicate to the listeners. Some of
these targets may correspond to local movements such as tone, accent, or music
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embellishments, and some to non-local movements such as phrase curves and
musical scores.

Local movements typically have clear linguistics functions. We describe them
with the Stem-ML stress tag. The stress tag specifies the accent component, and
it normally corresponds to a syllable or a word; the phrase curve is specified by
several step to tags. The most important attribute of the stress tag is the shape
template, which draws the ideal shape of an accent. The stress tag can define
the pitch at one or more points, and so can be used to implement slopes, peaks,
or valleys, in addition (or instead of) specifying a particular pitch at a particular
time. The stress tag has other attributes to be explained momentarily, such as
strength, type and atype, that control the way the specified shape is realized in
different environments.

In this work, each pitch target, yi, consist of an accent component (embel-
lishment) added to the underlying phrase curve (musical score):

yi = P + Yi · atypei · si
|atype

i
| (1)

where P is the phrase curve, Yi is the shape of the ith accent, and atype ·si
|atype|

is a scale factor on the ith accent’s pitch range that normally expands the range
of high strength accents. We assume that the atype parameter is shared amongst
all instances of a particular accent (embellishment); it controls how the pitch
range of the template scales with the tag’s strength (Equation 2). (Note that yi

and P and Yi are all functions of time, and we have suppressed the t subscript,
for clarity. P is defined across the entire phrase, but yi and Yi are defined only
over the scope of the tag.)

These targets are subject to performance constraints during production. We
can represent the surface realization of prosody as the solution to an optimiza-
tion problem, minimizing the sum of two functions: a physiological constraint
G (Eq. 3), which forces the pitch curve to be smooth, and a communication
constraint R (Eq. 4), which is the sum of errors ri (Eq. 5) between the pitch
and the pitch target (yi) for each tag. The errors are weighted by the strength,
si, of each stress tag, which indicates how important it is to satisfy the specifi-
cations of the tag. We do not claim that G provides a detailed representation of
muscle behavior, but it captures the damped mass-and-spring dynamics of real
muscles, and provides results similar to the classic Hill model of muscle behavior
[Hill, 1938].

If the strength of a tag is low, the physiological constraint dominates, and
smoothness is more important than accuracy. Each tag’s strength controls the
interaction of accent tags with their neighbors by way of the smoothness re-
quirement, G. Stronger tags are realized more accurately and also exert more
influence on their neighbors.

Stress tags also have a parameter which controls whether errors in the shape
or average value of the pitch relative to the target is more important. (This is
the Stem-ML type parameter.) We write this parameter as α = cos(type · π/2)
and β = sin(type · π/2), so α2 + β2 = 1.

In this work, the pitch targets, y, consist of an accent component added to
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the underlying phrase curve:

y = P +
∑

i

Yi · atypei · si
|atype

i
| (2)

where P is the phrase curve, Y is the accent shape, and atype · si
|atype| is a

scale factor on the ith accent’s pitch range that typically expands the range of
high strength accents. The sum is taken over all accents that cover the time
under consideration. This atype parameter is assumed to be shared amongst all
instances of a particular accent (embellishment); it controls how the pitch range
of the template scales with the tag’s strength (Equation 2).

G =
∑

t

ṗ2
t + (πτ/2)2p̈2

t (3)

The “effort” term, which, when the sum is minimized, forces the solution to be
smooth and continuous.

R =
∑

i∈tags

s2
i ri (4)

The “error” term. This is a weighted sum of template-by-template errors.

ri =
∑

t∈ tag i

α ((pt − p̄i) − (yi,t − ȳi))
2

+ β(p̄i − ȳi)
2 (5)

The error in template i; this drives the pitch, p, to be close to the target, y.

In the equations above, pt is the normalized pitch at time t, that is, the
pitch relative to the speaker’s normal range. Also, p̄i is the average of p over
the scope of tag i, and ȳi is the average of yi over its scope.

For the speech modeling, we simply scale p to get f0: f0 = p · range + base,
where range and base are speaker-dependent constants that give the normal
range of f0 variation and the speaker’s typical f0. For the singing examples, we
use an exponential scaling to make defining the phrase curve (i.e. the notes)
more convenient: f0 = 2(p/12) · base. The range of f0 in the examples presented
here is small enough so that the two representations are not too different.

3.3 Notation

Local movements such as accents, tones, and musical embellishments are de-
scribed by Stem-ML shape templates in the stress tags. In this paper, we define
and use bow-tie (./), wiggle (≈), rise (4), fall (5) and droop (B) shapes.

Each shape is specified as line segments connecting a set of points
[(x1, y1), (x2, y2), . . .], and α (see Eq. 5).

The subscript in shapestrength specifies the strength of the tag, which is the
si in Equations 2 and 4.

These can be used to describe word accents in speech and embellishment in
singing. Each tag has a scope (over time), and while it can strongly affect the
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prosodic features inside its scope, it has a decreasing effect as one goes farther
outside its scope.

In sections 4.1, 4.2, and 4.4, we explore several examples where local f0 or
amplitude modification is controlled by Stem-ML shape templates.

Non-local movements, including musical notes and phrase curve, are con-
trolled by Stem-ML step to tags (m). mvalue pins the phrase curve to value at
the time of the tag, and the pitch will follow.

Section 4.3 shows an example describing larger scope features such as a
phrase curve with Stem-ML step to tags.

4 Examples

4.1 Musical Embellishments - Changing Pitch

We use Stem-ML in two directions, both to evaluate prosody from tags and,
in reverse, to deduce the values of numerical parameters of tags from the data.
The Stem-ML evaluation component takes tag and attribute values as input
and generates time series data such as f0 or an amplitude curve. The Stem-ML
optimizer takes data and partial tag annotation as input, and it finds the best
description of the data in terms of the tags’ parameters. One feeds it Stem-ML
tags with free parameters (e.g., a tag with an undetermined strength attribute),
and it finds the values of the parameters that lead to the best fit to the data. In
this section, we show how this works with a single phrase from Dinah Shore’s
rendition of A Bicycle Built for Two, originally written by [Dacre, 1892].

This song is historically important in the text-to-speech synthesis tradi-
tion [Olive, 1998]. John Kelly at Bell Labs synthesized A Bicycle Built for
Two in 1963 [?]. It was the first computer synthesized song. The work was the
inspiration behind the movie 2001: A Space Odyssey [Kubrick, 1968], where the
rebellious computer HAL was singing this song as he was disconnected, claim-
ing, historically correctly, that this is the first song his master taught him. We
chose Dinah Shore’s recording because she gave several variations of the same
song, with light accompaniment, so that f0 and amplitude could be reliably
extracted.

Musical scores do not completely specify the sound, in the sense that per-
formers may have very different renditions based on the same scores. We make
use of the musical structures and phrasing notation to insert embellishments
[Garretson, 1993] and to implement performance rules, which include the de-
fault rhythmic pattern, retard, and duration adjustment [Sundberg et al., 1983,
Friberg, 1995]

Indeed, real performances may differ enough from a naive, mechanical inter-
pretation of the score so that even the identification of a note with a particular
time interval may be ambiguous or difficult. For example, in Figure 2 none
of the musical notes fall on expected frequencies, neither do they show step-
like frequency jumps as implied by the musical score, despite the fact that the
performance is pleasant and sounds in tune.
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Figure 2: A musical phrase and its score.

Given a song and the corresponding musical score, we manually annotate
notes and their locations as shown in Figure 2. We place the note boundaries
close to the beginning of voicing onset, therefore the half note D is annotated
as being shorter than one would expect from the music, because it begins with
a voiceless consonant cluster st. This definition of note boundary works better
with embellishment fitting and allows us to align the glide-up embellishment
(4) with the beginning of the note.

In Stem-ML models, musical notes are treated analogously to the phrase
curve in speech: both are built with step to tags. For music, the Stem-ML pitch
range is set to be an octave1, and we use an exponential mapping between the
Stem-ML strength values and f0.

We use the Stem-ML optimizer to find the base frequency, so that we can
identify the key and the tuning. With base frequency known, we can then draw
in the un-embellished notes (derived directly from the musical score), study the
differences between the performance and the scores, and classify the differences
into embellishments. Figure 3 plots the f0 curve of the singing performance in
solid lines, and the notes in the score as dashed lines.

We marked locations where a note glides up with 4 and when a note glides
down, we marked 5. The wiggle shape, perhaps the perceptually most obvious
feature, is marked with ≈, and occurs near 2.2 seconds in Figures 2 and 3. We

1Note that the pitch range doesn’t limit the pitch: it merely sets the scaling.
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Figure 3: The difference between singing performance and the musical score.

avoid conventional terms for these embellishments, because we wish to avoid the
rigid definitions of musical ornaments. For instance, the wiggle shape is similar
to a classical inverted mordent, but without any particular intervals, and it can
have freer movement. The pitch undulation on the last note (G) is a vibrato.
We handled vibrato separately in our song program, because the neural and
physiological mechanisms may be different, so we did not annotate it for the
fitting.

Given f0 and annotations expressed in Stem-ML tags, we again use the
optimizer to fit parameter values of shapes and strengths that best describe the
observed f0. We fixed the strength value of the musical step to notes to 8. This
large value helps to maintain the specified frequency as the tags pass through
the prosody evaluation component. We obtained from the fitting process the
best shape for each of the abstract embellishment categories ≈, 4, 5 (Figure 4),
along with the strength values of each instance (Figure 5).

¿From these annotations, including musical notes, embellishment types and
fitted strength values, Stem-ML generated the f0 curve shown in Figure 5.

The training cleanly separates the melodic component of the song from the
embellishments, resulting in tags that describe portable embellishments that can
be moved around and used as building blocks of new renditions. For instance,
by moving ≈ from marriage to can’t, we generate a different rendition of the
same musical phrase as shown in Figure 6.

We can follow this method to build a library of musical embellishments.
With such a library, we can change embellishments, shift the embellishments
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Figure 5: Embellishments with fitted strength values, and the resulting generated
f0 curve.
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Figure 6: Moving embellishment around to generate a different performance.

to different locations, or change their strengths to write the song in a different
style. Currently, embellishment placement is handled by heuristic rules. For
example, ≈ is used by Dinah Shore on an accented syllable with a strong beat,
in a sequence of phrase final descending notes. Changing these rules is part of
changing the musical style.

When deciding where to place an embellishment, one should follow musical
conventions as well as reflecting a personal style. For instance, placing an embel-
lishment on any note gives a melody that can be sung and sounds “natural”, but
many choices do not make good music. This is not unexpected, because Stem-
ML models the low level physiological interactions between tags, but makes no
attempt to model aesthetic judgments.

Shore’s wiggle (≈) also has characteristic amplitude profile. This embellish-
ment has two humps in the f0 trajectory, where the first f0 peak coincides with
the amplitude valley. We use an amplitude template in tandem with the f0

template to coordinate these two channels. Figure 7 shows these two templates
on the same time axis.

Shore sang nine wiggles in the three variations of the song On a Bicycle
built for two. These renditions had different tempi, keys, and improvisation,
thus providing an interesting range of contexts for this embellishment. Table 1
lists the duration of these wiggles in seconds, the length of the measure, the
estimated length of the note, and the textual context.

Since the note boundary in the signal is ambiguous and difficult to label with
standard tools such as Xwaves [Esps/Waves, 2002], we asked three subjects to
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Figure 7: Templates for the embellishment wiggle (≈). The figure shows the f0

(top) and amplitude (bottom) templates for this embellishment.

≈1 ≈2 ≈3 ≈4 ≈5

wiggle 0.33 s 0.30 s 0.34 s 0.37 s 0.28 s
measure 0.82 s 0.80 s 0.79 s 0.80 s 0.80 s
note 0.27 s 0.26 s 0.40 s 0.26 s 0.26 s
text marr(iage) carr(iage) dai(sy) do carr(iage)

≈6 ≈7 ≈8 ≈9

wiggle 0.32 s 0.44 s 0.45 s 0.37 s
measure 0.99 s 0.98 s 0.91 s 0.91 s
note 0.50 s 1.47 s 0.30 s 0.30 s
text for love marr(iage) carr(iage)

Table 1: Lengths of wiggle embellishments in “Daisy” as they relate to the
duration of the notes and measures that contain them.
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tap the beat (one tap per measure) while listening to the music. Subjects can
perform this task easily, and it gives a clear mark of the boundary of each
measure. Subjects also agree on their transcriptions of note-to-measure ratio
(e.g., 2-to-1 or 3-to-1). We then estimate the note length from the measure
length and the transcription of the note-to-measure ratio.

We fit a regression model predicting the length of wiggle from the voicing
status and from the length of the measure and the length of note respectively.
The prediction based on measure length and voicing is better (Pearson’s r=0.63)
than the prediction from note length and voicing (Pearson’s r=0.35). See equa-
tion 6.

wiggle = −0.05s + 0.42 · measure + 0.07 · voice (6)

The fit implies that the length of a wiggle is longer at slower tempi. Voicing
also has an effect; a voiceless onset to a note shortened the wiggle’s length. It is
interesting that one can predict the length of wiggle better from the tempo than
from the note to which it is applied. It appears that there is a minimum length
requirement of this embellishment. If the note length is too short it lengthens
to accommodate the embellishment.

4.2 Musical Embellishments - Changing Amplitude

Figure 8 shows the amplitude profiles of the first four syllables Dai-sy
Dai-sy from the song On a Bicycle Built for Two by the singer Dinah
Shore [Shore, 1999]. She merged a de-crescendo and crescendo in the same note,
creating a bow-tie-shaped amplitude profile (The second syllable, centered near
1.2 seconds, is the clearest example.) The decrease of amplitude in the middle
of a note contrasts with notes from most singers. For instance, Figure 9 shows
the more even, slowly changing amplitude profile of another singer. The bow-tie
amplitude profile shows up very frequently in Shore’s singing. Her consistent
use of this profile and the contrast with the norm mark the amplitude profile as
an important component of her distinct style.

To model the local amplitude changes seen in Figure 8, we describe the
shapes of the amplitude profile with templates the same way as we de-
scribe the shapes of the pitch embellishments. The same modeling tech-
niques are applicable, because (at least during vowels, and if one normalizes
for the vowel), the amplitude is primarily controlled by the sub-glottal pres-
sure [Strik and Boves, 1992], and that pressure is controlled in turn by the dy-
namics of the chest, diaphragm, and abdominal muscles.

A note should have at least two beats to allow sufficient time to realize this
pattern (minimally one beat for de-crescendo and one beat for crescendo). In all
of observed cases the note starts as the first beat of the measure. In addition,
Shore didn’t use bow-tie on notes with heavy pitch embellishment, vibrato, or
on the very last note.

The bow-tie amplitude is used frequently. Out of the 50 notes in the first
repetition of the song, there are 22 notes that are 2 beats or longer. Among
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Figure 8: Dinah Shore’s signature amplitude profile

Figure 9: Amplitude profile of another singer
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Annotation: ./ ./ ./ ./ B B B

Dai- sy Dai- sy give me your

Figure 10: Amplitude control in synthesized song. Stem-ML is used to produce a
time series of amplitude vs. time, which is used to multiply the amplitude profile
of TTS-generated sound to implement the style. This figure displays (from top
to bottom), the amplitude control time series, acoustic waveform produced by
the synthesizer without amplitude control, and acoustic waveform produced by
the synthesizer with amplitude control.

them, 14 have the bow-tie amplitude profile. In the second repetition, Shore
inserted words which shorten some notes. Consequently the number of long
notes is reduced to 16, out of which 10 have the bow-tie amplitude pattern.
The third repetition is in slow tempo where Shore opted for crescendo and
vibrato instead of bow-tie on long notes. Out of 24 candidates, 7 have the
bow-tie pattern. In contrast, we didn’t find any bow-tie amplitude profile in
the recording of the same song by two other singers, one amateur and one
professional.

The amplitude control for the first five measures of Shore’s On a Bicycle
Built for Two is shown in Figure 10. A bow-tie shaped template (./) is applied
to long, non-final notes as on each syllable of the word Daisy. A droop template
(B) is applied to short notes and to the last note of the phrase.
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4.3 Speaking Styles - Phrasal Scope.

In this section we switch to speech, exploring a way to model Martin Luther
King’s distinctive style. Technically, much of the style is carried by the phrase
curve, which we control in the same way as we control music scores. The
combination of accent and phrase curve is the same as the combination of music
scores and embellishments.

In the f0 traces of typical English sentences from typical speakers, most of the
f0 movements reflect word accent and emphasis. The phrasal component, if any,
is a smooth decline. They are different from Martin Luther King’s rhetorical
style (Figure 1), where word accent and emphasis modifications are present
but the magnitude of the change is relatively small compared to the f0 change
marking the phrase. The f0 profile over the phrase is one of the salient features
of King’s style.

Figure 11 shows a set of histograms comparing snapshots of the phrase curves
of Martin Luther King Jr. and another professional speaker (J). Speaker J’s data
is presented in the left column and King’s data in the right column.

Each histogram shows the distribution of 10 voiced f0 samples collected from
different regions of phrases, where phrase is defined as speech signal followed
by at least 250 msec of silence. F0 samples were taken every 10 msec, and we
excluded voiceless regions, so each region is at least 100 msec long.

The rows, from top to down, shows the changes of f0 patterns as time pro-
gresses. The picture shows two distinct patterns of f0 usage and their sensitivity
to phrasal positions.

The plots show the following regions of interest: the first 10 voiced samples
of a phrase, from the 30th to the 40th samples, 10 samples from the mid point
of the phrase, and the final 10 samples of the phrase. All sentences are long
therefore the mid point always comes after the 30th sample in time.

The speech materials from both speakers are continuous paragraphs. King’s
speech includes 12 minutes of The American Dream [King, 2000].

Speaker J’s speeches were movie critiques and commentaries. There are
around 35,000 f0 samples in each database.

The two speakers have similar pitch range spanning from 50 Hz to 300 Hz,
but with very different patterns of f0 usage.

Speaker J’s pattern, shown on the left, exhibits a broad distribution in f0

ranges in all but the final positions. The middle region has lower range than the
earlier regions, which is consistent with declination effect and downstep effect
[Fujisaki, 1983, Pierrehumbert, 1979]. The final region is markedly lower than
previous regions, where most of the f0 samples are below 100 Hz. This pattern
is consistent with the final lowering effect and the sentence final low boundary
tone [Liberman and Pierrehumbert, 1984].

King’s speech has a strong phrasal component with an outline defined by
an initial rise, optional stepping up to climax, and a final fall. His initial and
final f0 patterns are similar, both dominated by f0 values around 100 Hz. As
early as 300 msec into the phrase, and persistent through out the phrase, the f0

range is characterized by a narrower band around 250 Hz. King may use pitch
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Figure 11: Histograms showing the contrast between Martin Luther King Jr.
(right) and a professional speaker J (left). Each column of plots forms a time-
series of how the pitch behaves through a phrase, where time increases down-
wards. Successive rows are the first 100 ms of the phrase, the region from 300 ms
to 400 ms, the 100 ms following the midpoint, and the last 100 ms of the phrase.
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Figure 12: Generated phrase curve and pitch contour in the style of Martin
Luther King.

step-up to emphasize words, causing pitch to rise rather than to decline. This
may account for the higher pitch range around the mid point region, compared
to the earlier 300 msec region.

To model this style, we use step to tags (m) to control the rise and fall in the
phrase curve. The argument value of the tag controls where the phrase curve
should be relative to the speaker’s pitch range. The intended f0 value of the
phrase curve at the time of the tag is calculated as base+step to value×range,
where base is the baseline and range represents the speaker’s pitch range.

We use heuristic grammar rules to place the tags. Each utterance starts
from the base value (m0), steps up on the first stressed word, remaining high
till the end for continuation phrases, and stepping down on the last word of
the final phrase. At every pause, return to 20% of the pitch range above base,
and step up again on the first stressed word of the new phrase. The amount of
step to (m) correlates with sentence length. Additional stepping up is used on
annotated, strongly emphasized words.

The step to tags above produce the phrase curve shown in dotted lines in Fig-
ure 12 for the sentence This nation will rise up, and live out the true meaning of
its creed. The solid line shows the generated f0 curve, which is the combination
of the phrase curve and the accent templates.

Figure 13 displays the accent templates used to generate Figure 12. King’s
choice of accents is largely predictable from the phrasal position: a rising accent
in the beginning of a phrase, a falling accent on emphasized words and in the
end of the phrase, and a third accent elsewhere.

Our emphasis is to explore portable prosodic features rather than copy syn-
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Figure 13: Accent templates for King’s prosody.

thesis, so in addition to reproducing the input f0 curve, we also require that
the features behave similarly as you move them, that they produce physically
possible f0 curves, and more-or-less sound the same, no matter where they are
placed. This is an example where dominant features of a style can be used
successfully in style imitation. The features and rules are portable due to their
simplicity. The rules refer to the edges of a sentence or phrase with minor ad-
justments for sentence length, without resorting to complex information such as
sentence structure and the part-of-speech of words.

4.4 Speaking Styles - Local Scope

Speaker-dependent speaking styles may also be conveyed by idiosyncratic shapes
for a given accent type.

We examined the DARPA Communicator [NIST, 2000] travel reservation
database, where subjects interact with a dialogue system trying to make flight
reservations, and found many examples of speaker-specific accent shapes. One
of the most common intonation patterns associated with a request of flight
origin and destination is the rising intonation [Shih et al., 2001], which in ToBI
notation [Beckman and Ayers, 1997, Silverman et al., 1992] would be annotated
as having the tone sequence L* H- H%, a low accent followed by a high phrase
accent and a high boundary tone. Different instances of the rising shapes by the
same speaker are fairly consistent, but there are substantial differences between
speakers.

Speakers 1 and 2 in Figures 14 and 15 convey different personal styles2 by
using distinct rising contours. In both figures, the natural f0 tracks are plotted
in stars and the generated f0 tracks as solid lines. The distinct accent shapes

2We interpret these differences as stylistic, rather than as different meanings because the
speakers are, broadly speaking, making the same request to the system, they both know it is
a machine that cannot understand any linguistic subtleties, and because no clear difference in
intent could be heard in the recordings.
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Figure 14: A sentence from Speaker 1 with two rising accents. “I live in
Nashville Tennessee and I’d like to go to Baltimore Maryland.”

are captured in the accent templates, which are shown above the figures. We
set the scope of the template to be equal to the scope of the word.

Figure 14 shows the sentence ... I live in Nashville Tennessee and I’d like to
go to Baltimore Maryland. The rising intonation in question shows up on the
words Tennessee and Maryland, where the pitch rises early and peaks before
the end of the word. The final section of these two words has relatively flat f0.

Figure 15 shows the sentence Um I would like a flight to Seattle from Al-
buquerque. The speaker used the rising accent on flight, Seattle, and twice on
Albuquerque, where both Al- and -quer- are accented. In contrast to the first
speaker, the second speaker’s rising slopes are fairly straight, rising from the
valley near the center of the word to a peak near the end of the word. The four
rising contours in Figure 15 are all generated from the same rising template
shown above the figure.

This treatment opens up the possibility that the same annotation in in-
tonational phonology, such as L* H- H%, may map to substantially different
pitch contours, because different speakers have different habitual execution of
the same linguistic functions. A related example is intonation patterns that are
part of a foreign accent. A non-native speaker may have the same linguistic
intent as the native speaker, but may simply implement an accent differently
under the influence of their native language.

This is similar to the style/content distinction shown earlier in the paper,
where the phonology plays a role in the content, and the style is the individual’s
implementation of the accent. Technically, this treatment is no different than the
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Figure 15: A sentence from Speaker 2 with multiple rising accents. “Um I would
like a flight to Seattle from Albuquerque.”

modeling of musical embellishment and the modeling of accent types that have
different phonological status. We simply allow the user to define unrestricted
shapes for accents in the modeling process.

5 Conclusion

In this paper we describe prosodic features that are related to personal styles.
We show examples of modeling embellishment and amplitude in music, as well
as phrase curves and accent shapes in speech.

We can represent styles of speech or performance styles in music by a set of
prosodic features, along with rules to show where the features are placed. With
this approach, we can convey the impression of a particular speaker/singer by
capturing the most salient prosodic features.

These examples suggest a common theme in terms of prosodic modeling:
There are local effects such as accent shape and musical embellishment, and
longer term effects such as phrase curve and musical notes. The accents and
embellishments should be portable, so that they can be placed arbitrarily, but
still produce a physically possible f0 curve, and have similar perceptual results.
This portability of the accents allows the heuristic rules that place them to be
simple and more intuitive, because they then do not have to work around illegal
combinations of accents.

Practical applications of this technique might include implementation of
quotes in news articles, multiple characters in games or dialogue systems, or
reading email with the prosodic characteristics of the sender.

All the examples discussed in this paper are available on the
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web at http://prosodies.org/papers/2003/IJST/styles.wav or
http://kochanski.org/gpk/papers/2003/IJST/styles.wav.
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