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Patterns of durational variation were examined by applying 15 previously published rhythm measures

to a large corpus of speech from five languages. In order to achieve consistent segmentation across all

languages, an automatic speech recognition system was developed to divide the waveforms into

consonantal and vocalic regions. The resulting duration measurements rest strictly on acoustic

criteria. Machine classification showed that rhythm measures could separate languages at rates above

chance. Within-language variability in rhythm measures, however, was large and comparable to that

between languages. Therefore, different languages could not be identified reliably from single

paragraphs. In experiments separating pairs of languages, a rhythm measure that was relatively

successful at separating one pair often performed very poorly on another pair: there was no broadly

successful rhythm measure. Separation of all five languages at once required a combination of three

rhythm measures. Many triplets were about equally effective, but the confusion patterns between

languages varied with the choice of rhythm measures.
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I. INTRODUCTION

There is a widespread intuition that languages differ in

“rhythmic structure.” Experimental studies suggest that the

perception of rhythm rests on a combination of different

acoustic properties that are not limited to duration. Barry et
al. (2009), for example, showed that changes in F0 influence

the perceived strength of rhythmicity. In another study, rate

of spectral change proved the most robust property for dis-

tinguishing spoken poetry from prose (Kochanski et al.,
2010). Furthermore, spectral properties (Tilsen and Johnson,

2008; Tilsen, 2008), intensity (Lee and Todd, 2004; Keane,

2006), and modeled auditory prominence (Lee and Todd,

2004) can help to determine rhythm in different languages.

Nevertheless, the acoustic parameter most frequently

linked to perceived differences in rhythm remains duration.

Perceptual studies show that both infants and adults can dis-

tinguish between languages when presented with resynthe-

sized signals that primarily contain durational cues (for

references, see Ramus et al., 1999; Nazzi and Ramus, 2003;

Komatsu, 2007)1. Accordingly, numerous quantitative indices

have been developed in attempts to capture the variation in

duration that underpins both the intuition and the experimental

findings. We follow Barry and Russo (2003) in calling these

indices of durational variation “rhythm measures” (RMs).

RMs have been widely used for comparisons between

different languages and varieties (see, for example, White and

Mattys, 2007a, for an overview). All these previous studies

have used relatively small corpora of speech. Growing evi-

dence, however, shows that RMs can vary greatly between

speakers or texts (Lee and Todd, 2004; Keane, 2006; Arvaniti,

2009; Wiget et al., 2010). A large speech corpus thereby

becomes essential for an extensive rhythm study. The corpus

should cover numerous speakers and many texts.

Much work has tried to determine which particular RMs

best separate languages and varieties (see White and Mattys,

2007a, for an overview). For example, White and Mattys

(2007a) and White and Mattys (2007b) examined which RMs

best differentiated speech from two languages or from native

and non-native speakers of a single language. Very few stud-

ies, however, have compared languages on more than two

measures at a time. Limited evidence intimates that this may

be insufficient for covering cross-language distinctions in

rhythm. Ramus et al. (1999) found that while just two meas-

ures distinguished groups of languages in their corpus, a third

pulled Polish apart from English and Dutch. (They suggested

that this third measure actually reflects phonological proper-

ties of the language and may be irrelevant to the perception of

rhythm.) Recently, a discriminant analysis by Liss et al.
(2009) indicated that several measures were necessary to dis-

tinguish dysarthric from normal speech. These various find-

ings raise two questions. First, can just two measures truly

encapsulate cross-language differences in rhythm? Second,

can some particular, limited set of measures suffice to capture

the differences in durational patterns between any two lan-

guages or varieties? Therefore, the many available measures

should be examined systematically.
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A. Purpose of experiment

To meet these requirements, we studied patterns of

durational variation in speech from five languages by apply-

ing 15 previously published RMs. The corpus for each lan-

guage was substantially larger than anything used in past

rhythm studies. We used several automatic segmentation

algorithms (SAs) that split speech into consonant-like,

vowel-like, and silent regions. The algorithms offer uniform,

language-independent treatment of acoustic signals, avoid-

ing the inevitable inconsistencies introduced by human

labeling and, very importantly, permitting computation of

RMs over our large corpora. Unless RMs are defined in such

a language-independent manner, they cannot be used to com-

pare languages. Machine classification was essential for

processing of the resulting extensive set of measurements.

Our principal aim was to examine rhythm from the

acoustic point of view, without reference to phonological

interpretation of a given language. Given this aim, three

major issues were addressed. First, how well can machine

classification identify the languages, using various combina-

tions of the RMs? Second, how many RMs are needed to dis-

entangle cross-linguistic variation in rhythm? Third, does the

array of the most useful measures depend on the languages

being identified?

II. METHOD

A. Speech data

Our corpus contained 2300 texts recorded from 50

speakers distributed across Southern British English

(N¼ 12), Standard Greek (N¼ 9), Standard Russian

(N¼ 10), Standard French (N¼ 9), and Taiwanese Mandarin

(N¼ 10). Each speaker read the same set of 42 texts (original

or translated) in their own language2. Texts included extracts

from “Harry Potter,” fables, and the fairy tale Cinderella. On

average, texts contained 217 syllables. Each speaker also

read four nursery rhymes (75 syllables on average), matched

across the languages for the number of syllables per line

and, where possible, poetic meter.

Speakers were 20–32 yr old, born to monolingual parents,

and had grown up in their respective countries. At the time of

the recording, all speakers were living in Oxford, United

Kingdom. Non-English participants had lived outside their

home country for less than 4 yr (median length of residence

1 yr)3. Recordings were made through a condenser micro-

phone in a soundproof room in the Oxford University Pho-

netics Laboratory and saved direct to disk at a 16 kHz

sampling rate. Texts were presented on a visual display unit

screen in standard orthography for each language. Speakers

could repeat any text if dissatisfied with their reading. Overall,

15% of the recordings were repeated, although the fraction

varied greatly between speakers. In most cases the recordings

were repeated after a brief false start. The recordings of each

speaker took place in two or three sessions on separate days.

B. Automatic segmentation

Before any interval-based RMs can be calculated, a first

crucial step is the language-independent segmentation of the

speech signals into vocalic and intervocalic intervals. The

definition of “vocalic” and “intervocalic” intervals must

avoid any phonological interpretations and ignore syllable

and foot boundaries unless they can be approximated in a

language-independent way (cf. Ramus et al., 1999).

Most studies on RMs have employed manual segmenta-

tion. Its outcome, however, varies between the labelers and,

more importantly, depends on their phonological knowledge.

Even with the precautions suggested by Wiget et al. (2010),

manual segmentation has serious shortcomings. For exam-

ple, a labeler’s ideas of “acoustic criteria” often rest on the

experience of segmenting English data. When applied to

other languages, such ideas may produce counter-intuitive

results, prompting re-evaluation (see, e.g., Barry and Russo,

2003; Grabe and Low, 2002; Lee and Todd, 2004). Cru-

cially, variability in RMs absolutely requires use of large

corpora. Manual segmentation here would be virtually

prohibitive.

Given the pitfalls of manual segmentation, interest has

understandably developed in automatic segmentation based

purely on acoustics (Galves et al., 2002; Dellwo et al.,
2007). Wiget et al. (2010) in particular compared automatic

and human segmentation of a small corpus. They first

employed automatic forced alignment to match a transcrip-

tion with the signal. Then they converted the transcription

into a sequence of vocalic and consonantal intervals. Scores

for traditional RMs computed from the automatic segmenta-

tion were within or just outside the ranges produced by the

human labelers.

Unfortunately, forced alignment depends upon language-

specific transcription, and therefore the resulting segmentation

is not based on purely acoustic criteria. Similar acoustic sig-

nals could be assigned different labels in different languages,

depending on their phonological interpretation in each lan-

guage. Forced alignment, moreover, is insensitive to variation

in the realization of individual sounds. For example, it misses

lenition and reduction or deletion of segments or syllabic con-

sonants, unless they are reflected in the transcription. In

theory, the transcription could be manually adjusted to reflect

such connected speech processes, or a comprehensive diction-

ary of alternative realizations could be compiled. Either alter-

native would be expensive and would simply negate the

benefits of automatic segmentation.

To avoid these difficulties, we used current methods of

speech recognition to create cross-linguistic statistical mod-

els of vocalic and intervocalic regions. Then the models

were embedded in SAs. To investigate whether different

models affect the findings, we compared the results from

three different algorithms. One algorithm (SA1) employed

the loudness of the signal and the regularity of its waveform.

The other two algorithms (SA2a and SA2b) were developed

through the standard Hidden Markov Model Toolkit (HTK)

toolkit (Young et al., 2006). Finally, all three algorithms and

human labelers were compared on the analysis of a sub-cor-

pus of our speech data. All SAs acted as recognizers. After

the training stage, a SA had no access to transcriptions. It

assigned labels according to acoustic properties of the signal.

As an example, Fig. 1 shows a waveform segmented by the

three algorithms.
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1. Segmentation algorithm SA1 based on loudness
and aperiodicity

For algorithm SA1, we computed time series of specific

loudness of the signal and aperiodicity of the waveform.

Aperiodicity varies between zero for a perfectly periodic sig-

nal and 1 for random white noise. Loudness was computed

from the signal using algorithms described in Kochanski

et al. (2005) and Kochanski and Orphanidou (2008). These

values were smoothed and then compared against thresholds

to generate transitions from one segment to another (see Fig. 2).

The process operated with three types of segments: (1)

vowel-like segments with a nearly periodic waveform; (2)

segments with an aperiodic waveform which can include fri-

cation and/or regions with rapid changes in the waveform;

and (3) silences. These three categories are broadly consist-

ent with the specifications of most published RMs, which are

defined in terms of vocalic and intervocalic intervals. Five

parameters controlled SA1: [a] a smoothing time constant

for the loudness and aperiodicity time series (the smoothing

process tends to suppress very short segments); [b] the nor-

malized loudness of the silence-to-non-silence transition; [c]

the normalized loudness of the opposite transition; [d and e]

aperiodicity thresholds for the (2)! (1) and (1)! (2) tran-

sitions, respectively. Two different thresholds were neces-

sary to prevent small fluctuations in the data from generating

a sequence of very short segments.

An optimization procedure set the parameters for SA1,

using a sample of 7143 utterances from the corpus. The sam-

ple contained data from 12 speakers, two per language but

four for English. It included texts from our corpus as well as

short sentences recorded by the same speakers for a larger

study. The parameters were adjusted to minimize the mean-

squared difference between the number of segments gener-

ated by SA1 and the number predicted from phoneme-level

transcriptions of the utterances. The number of occurrences

of segment type (1) produced by the SA1 was matched to the

number of appearances of vowels and sonorants. The num-

ber of occurrences of segment type (2) was matched to that

of the remaining phonemes. Silences [segment type (3)]

were weakly constrained to appear about 10% as often as the

other regions. After this optimization, the parameters were

applied across the entire corpus.

2. HTK segmentation algorithms SA2a and SA2b

The HTK toolkit (Young et al., 2006) underlay the other

two segmentation algorithms, SA2a and SA2b. For SA2a

speech was represented as a 26-dimensional standard Mel

frequency cepstrum coefficient (MFCC) vector (see, for

example, Davis and Mermelstein, 1980). For SA2b speech

was represented as 41-dimensional Acoustic Description

Vector (Kochanski et al., 2010). The two algorithms also

varied in numbers of states, minimal pause lengths, and

ways of measuring phoneme duration (see Appendix A for

further details). Standard speech recognition algorithms are

usually trained on the data from a particular language which

may result in different acoustic models for different lan-

guages. We trained the algorithms on human-segmented data

containing a mixture of texts from all five languages and

then applied the derived models to the whole corpus. As a

result the same acoustic models were used to segment the

data from all languages, thereby ensuring consistent lan-

guage-independent segmentation.

C. Rhythm measures

Published RMs differ in three respects. First, they use

differently determined intervals. Initially, rhythm metrics

rested on the durations of vocalic or of consonantal intervals.

Explanations of perceived differences in rhythm have also

invoked phonological properties such as vowel reduction

and syllable complexity (Dauer, 1983); these properties pre-

sumably would affect RMs that employ vocalic or consonan-

tal durations. More recently, however, Barry et al. (2003)

argued that treating consonants and vowels separately forces

RMs to miss the combined effect of vocalic and consonantal

structure. They proposed that RMs should be defined in

terms of syllables or pseudo-syllables. Deterding (2001) had

earlier suggested a similar approach. Liss et al. (2009)

FIG. 1. The outcome of three SAs

for an English phrase, “For the first

couple of weeks back.” The bottom

pane shows X-Sampa labels

assigned by one of the authors, the

top three panes show the labels

assigned by three automatic segmen-

tations. The vertical lines correspond

to the borders assigned by SA2a.

FIG. 2. Transitions between the three states.
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measured variation in the duration of VC (a sequence con-

sisting of a vocalic and a consonantal interval) sequences,

arguing that these better represent the perception of syllable

weight. Finally, Nolan and Asu (2009) recently suggested

further modifications of RMs based on feet.

The second difference between RMs is whether they

assume “global” or “local” forms. Global RMs capture varia-

tion in the duration of particular intervals over an entire

utterance. Local measures focus on differences between two

immediately consecutive intervals and then average those

differences over the utterance. Local measures supposedly

differentiate better between various patterns of successive

long and short intervals, thereby capturing auditory impres-

sions of rhythm (see Barry et al., 2003).

Third, some measures include a normalization step,

while others keep raw durations. Measures based on raw

durations are more vulnerable to changes in speech tempo.

Normalized measures, however, may level out cross-linguis-

tic differences. Many studies have used a combination of

both. For example, Grabe and Low (2002) normalized their

vocalic index but used raw values for the consonantal index.

In another study, Wiget et al. (2010) found that normalized

measures of variability of vocalic intervals discriminated

best between languages and were most stable under changes

in articulation rate. They recommended using a combination

of at least two measures that were robust to segmentation

procedures and to speech rate.

Using each of the three SAs described above, we com-

puted the 15 RMs listed in Table I on each of the 2300 spo-

ken texts in our corpus (see Appendix A). Although the

conventional labels V and C appear in the table, they really

refer to the labels assigned by the SAs. Our labels reflect the

acoustic properties of spoken speech and may not correspond

perfectly to phonologically transcribed vowels and conso-

nants. For RMs based on phonological syllables, we used

sequences of consecutive consonantal and vocalic intervals

(CV). We did not use measures based on VC sequences,

which Liss et al. (2009) suggested for dealing with syllable

weight, since most languages in our corpus do not contrast

light and heavy syllables. We also excluded measures based

on feet, since the definition of foot is language specific.

Previous studies of RMs have treated pauses and pre-

pausal syllables in different ways. To evaluate the impor-

tance of such different treatments, we computed each RM in

three different ways. First, we calculated the scores for each

inter-pause stretch (IPS) then averaged over all IPSs within a

text. The average was weighted by the duration of each IPS.

Second, we made the same calculation after omitting the

final “syllable.” For each IPS that ended in a vocalic interval,

we omitted the final (CV). For each IPS that ended in a con-

sonantal interval, we omitted the two final consonantal inter-

vals and the intervening final vocalic interval (CVC). Third

and finally, scores were simply computed across the whole

text, including intervals spanning a pause.

D. Classifiers

To quantify variation in RMs between languages, we

applied classifier techniques (cf. Kochanski and Orphanidou,

2008). A classifier is an algorithm that decides which lan-

guage was most likely to have produced an utterance, given

one or more observed RMs. We used linear discriminant

classifiers and a Bayesian forest approach (see Appendix B).

Insofar as the RMs capture the rhythmic differences between

the languages, success corresponds roughly to the probabil-

ity that a listener could identify the language from its rhythm

after hearing a single spoken paragraph.

Our classifiers assume that the log likelihood ratio

between the probabilities of any two languages is a linear

function of the input RMs. The classification boundaries for

each language then form a convex polygonal region in the

space of the observed RMs.

To obtain reliable error bars on our classification proba-

bilities, we used a combination of Bootstrap resampling

(Efron, 1982) and Monte Carlo sampling. To do this, classi-

fiers were built with 12 different combinations of non-over-

lapping training and test sets. These sets came from a typical

3-to-1 split of the dataset, respectively. The algorithm pro-

duced 20 different Monte Carlo samples of classifiers that

TABLE I. RMs used in this study classified by type of intervals, scope, and normalization.

RM Description Type of interval Scope Normalization Reference

%V Percentage of vocalic intervals Ratio Global Yes Ramus et al. (1999)

Vdur/Cdur Ratio of vowels duration to consonant duration Ratio Global Yes Barry and Russo (2003)

DV Standard deviation of vocalic intervals V Global No Ramus et al. (1999)

VarcoDV DV/mean vocalic duration V Global Yes Dellwo (2006)

VnPVI Normalized pairwise variability index (PVI) of vocalic intervals V Local Yes Grabe and Low (2002)

medVnPVI VnPVI computed using median value V Local Yes Ferragne and Pellegrino (2004)

DC Standard deviation of consonantal intervals C Global No Ramus et al. (1999)

VarcoDC DC/mean vocalic duration C Global Yes Dellwo (2006)

CrPVI Raw PVI of consonantal intervals C Local No Grabe and Low (2002)

CnPVI Normalized PVI of consonantal intervals C Local Yes Grabe and Low (2002)

medCrPVI CrPVI computed using median value C Local No Ferragne and Pellegrino (2004)

PVI-CV PVI of consonantþvowels groups CV Local No Barry et al. (2003)

VI Variability index of syllable durations CV Local Yes Deterding (2001)

YARDa Variability of syllable durations CV Local Yes Wagner and Dellwo (2004)

nCVPVI Normalized PVI of consonantþ vowel groups CV Local Yes Asu and Nolan (2005)

aThe definition for YARD is yet another rhythm determination.
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were consistent with that training set. We report averages of

the resulting 240 (12*20) individual runs on each dataset.

The variation in performance of a classifier from one

instance to another was used to determine whether differen-

ces in performance are statistically significant. To prevent

classifiers from learning patterns of individual speakers, data

from a given speaker never appeared in both the training and

the test set for a given run.

For each SA and pause condition, we ran 15 classifiers

based on single RMs, 105 based on all possible combinations

of two RMs, and 455 classifiers based on all possible combi-

nations of three RMs. Finally, one classifier used all 15

RMs, for a grand total of 576 classifiers. For each of the

three SAs, then, there were 1728 runs that included different

pause conditions. Similarly, each pause condition was repre-

sented in 1728 runs that included the different SAs. We first

applied all classifiers to pairwise identification of all ten

pairs of languages in our corpus. We then repeated the analy-

sis for the whole corpus at once, testing how well the classi-

fiers separated all five languages.

Our results are based on the probability of correctly

identifying the language of a paragraph. If this is large (i.e.,

near 1.0), it means that the data from the various languages

can be separated into distinct groups by straight lines4. One

can think of this as a test of the hypothesis that RMs for dif-

ferent languages form separable clumps. An identification

probability near chance happens if the data from different

languages are intermingled.

We defined our chance level conservatively, to be the

best possible performance of a classifier that knows the rela-

tive frequencies of the classes, but not the RM value(s) for a

particular paragraph. The chance level is then the proportion

of passages from the most frequent language in the training

set. This varies from experiment to experiment, and even for

the different classifier instances within a forest, since the

training sets do not have exactly the same composition.

To allow simple comparisons, we report both the pro-

portions of correct identifications, P(C) and a figure of merit

designated K. This is computed as K¼PðCÞ�chance

1:00�chance
; where

1.00 represents perfect performance. Thus, K varies between

0 for classifiers that perform at chance and 1 for perfect clas-

sifiers. We used z-tests to assess both the significance of dif-

ferences between P(C) and chance for each classifier and the

significance of differences in P(C) between classifiers. Since

we foresaw a large number of tests, we set the significance

level of the tests (a) conservatively at 0.01.

III. RESULTS

A. The effect of segmentation and computation
method

The three methods of handling pauses in the computa-

tion of RMs did not affect classifier performance. For classi-

fiers using identical RMs, differences in P(C) between pause

conditions were significant in less than 1% of all 5184

(3*1728) possible pairwise comparisons. This outcome is at

chance. SA did not influence the performance of classifiers

that treated all five languages in one run. Classifiers using

identical RMs yielded significantly different values of P(C)

between two SAs in less than 1% of the 5184 possible com-

parisons. This again is at chance.

In contrast, for classifiers that sorted just a pair of lan-

guages, significant differences in P(C) appeared between SAs

in about 2% of the 51 840 cases. (Each of the ten possible

pairs underwent 5184 comparisons across SAs.) Across all

pairs, the differences mainly occurred between SA1 as against

the two HTK-based algorithms, SA2a and SA2b. Generally,

SA1 performed worse than the other two. The P(C) was

higher for SA2a than for SA1 in 70% of significantly different

comparisons. Where P(C) differed significantly between

SA2b and SA1, the former performed better 93% of the time.

In short, computation procedure had no effect on the ac-

curacy of language identification. SA had only a small effect.

Accordingly, the classifier results presented below rest on

algorithm SA2a and on RM computations that omit the final

CV or CVC in each IPS.

B. The effect of repetition

As described in Sec. III A, speakers could stop the re-

cording and start from the beginning, if they were dissatisfied

with their reading. As a result about 15% of the texts were

recorded on a second or third attempt. To estimate any effect

of such repetition on RMs, we ran multiple regressions with

RMs as dependent variables. For each RM, we compared the

r2 obtained with both “speaker” and “repetition” as independ-

ent variables against the r2 obtained with speaker alone. We

did a similar analysis for mean syllable duration for each text.

Mean difference in r2 for all RMs and speech rate was 0.0005.

Repetition clearly did not affect the values of RMs.

C. Classifiers for pairs of languages

Most behavioral language identification experiments

have used pairs of languages. Therefore, we took the 576

classifiers using all possible combinations of 1, 2, 3, and 15

RMs and applied them to the ten possible pairs of languages

in our corpus. Languages in all pairs could be separated

above chance, but P(C) never reached unity (perfect identifi-

cation). That occurred because all pairs of languages showed

FIG. 3. The values of VnPVI and YARD in English and Mandarin data (K
¼ 0.46, P(C)¼ 0.76, chance¼ 0.54).
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substantial overlaps in RM values. Figure 3 shows the distri-

bution of values for a randomly selected pair of measures

and pair of languages.

For nine of the pairs of languages, maximum P(C) could

be achieved using only one RM (see Table II); adding further

RMs gave no significant gain in P(C). The one exceptional

case was identification of Russian vs Greek, where three

RMs were needed to maximize P(C). Table II shows that the

most successful single RM (or successful set of RMs)

depended on the language pair. For example, a single conso-

nantal measure allowed the best possible separation of Man-

darin from English, but no consonantal measure could

separate Mandarin from French above the chance level.

Not all pairs of languages showed the same degree of

confusion. Mandarin was identified most readily: across all

four language pairs that included Mandarin, the best classi-

fiers gave an average K of 0.53 and average P(C) of 0.78

(average chance, 0.53). In contrast, across all six pairs of

European languages, the best classifiers yielded an average

K of 0.30 with an average P(C) of 0.68 (average chance,

0.54). The difference in P(C) between any two pairs of Euro-

pean languages was not significant.

D. Identification of all five languages

1. The success of individual RMs

Only eight of the 15 RMs performed above chance in

correctly sorting all five languages in our corpus. These were

the two ratio measures, all normalized vocalic measures and

all normalized CV-based measures (see Table I). Their aver-

age P(C) was 0.33 (chance¼ 0.23, K ¼ 0.12). No significant

differences appeared among these eight classifiers.

2. Classifiers based on several RMs

As reported above, the RM that maximized observed

P(C) for a pair of languages differed between pairs. As these

results imply, classifiers required a combination of RMs

to maximize P(C) for all five languages. Given a single CV

or V measure, adding two more measures from the V, CV,

or ratio types raised P(C) to an average of 0.44 (K ¼ 0.27).

For classifiers based on a single ratio measure, significant

improvement required adding three V or CV measures. Av-

erage P(C) for classifiers using four such RMs then reached

0.46 (K ¼ 0.30). Finally, although no classifier using a single

consonantal measure had performed above chance on all five

languages, a combination of C-based measures improved

matters significantly. Fifteen classifiers based on pairs or tri-

ads of local and global C-based measures achieved an aver-

age P(C) of 0.36 (K ¼ 0.17).

Beyond this, adding more RMs to the classifiers yielded

no further gains. No combination of classifiers correctly

identified the five languages all the time. Indeed, classifiers

based on all 15 RMs gave a P(C) around 0.55 (K ¼ 0.41).

This does not differ significantly from the rates achieved by

virtually all classifiers that used just three vocalic or syllabic

measures. In short, within the 15 RMs studied here, maxi-

mum accuracy in identifying our five languages required a

combination of just three of the right types of measures.

Moreover, many sets of three RMs performed similarly well.

E. Relations between RMs

Many of the 15 RMs rely on similar calculations and

therefore are highly correlated. To estimate the minimum

number of RMs needed to cover the variation between our

five languages, we performed multidimensional scaling

(MDS) with PROXSCAL. To create a dissimilarity measure,

RMs were intercorrelated within each language. Then 1 �
r2, where r is a correlation, gave an ordinal dissimilarity

measure between two RMs, ranging from 0 to 1. Languages

were treated as separate sources for PROXSCAL.

The dissimilarities between the 15 RMs gave rise to a

five-dimensional solution (stress¼ 0.008). The dimensions

seemed to represent distinctions between subgroups of RMs

due to type of interval (C, CV, ratio, V) and to presence or

absence of normalization. No grouping appeared that

reflected scope (local or global). Languages differed mod-

estly in their weights on the different dimensions.

At first sight, this seems to disagree with the fact that

more than three RMs did not significantly improve P(C) for

classification of five languages. The MDS solution, however,

addresses language identification only indirectly: it shows

that with just five RMs one can accurately predict any of the

other ten. This sets a maximum on the number of RMs that

could be used to identify languages. The success of three-

RM classifiers readily fits with this: there are five independ-

ent RMs, but languages in our corpus only differ in three of

them. Notice that the criterion of “statistically significant

improvement” used in this study is conservative: a fourth

RM might yield some small gain that only an extremely

large experiment could detect.

F. Relative location of languages

Although classification of all five languages using differ-

ent combination of RMs can yield comparable values of P(C),

the confusion patterns depend on the types of RMs. To dem-

onstrate this, we created two 5� 5 asymmetric matrices

TABLE II. The smallest number of RMs, the best performing measures or

types of measures for optimal separation of pairs of languages and average

K values for the best performing measures or combinations of measures

(The “best performing” measures or combinations of measures are those for

which K value was not significantly different from the maximum value

achieved for a given pair of languages). The best performing RMs depend

on the language pair.

Language pair Min N of RMs Best RMs K

Russian–Mandarin 1 Ratio, VarcoDV, DC, %V 0.56

English–Mandarin 1 Ratio, C 0.52

French–Mandarin 1 VarcoDV, %V 0.47

Greek–Mandarin 1 Ratio, normalized V and CV 0.58

Russian–Greek 3 V and CV 0.37

English–Greek 1 VarcoDV, medCrPVI 0.37

English–Russian 1 VarcoDV 0.33

English–French 1 VarcoDV 0.26

French–Greek 1 VnPVI 0.27

French–Russian 1 medVnPVI 0.21
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containing proportions of confusion between pairs of lan-

guages. One matrix held the results for all significant three-

RM classifiers based on CV, V, and ratio only measures. The

other was constructed from the results of all significant three-

RM classifiers using C measures only. Figure 4 shows the two

MDS maps produced by ALSCAL from these matrices. The two

maps reveal different confusion patterns. Classifiers based on

V/CV/ratio measures separated Mandarin from the European

languages but often confused those four. Classifiers using con-

sonantal measures exclusively put Russian and English in one

MDS region and French, Greek, and Mandarin in another.

This agrees with the finding that consonantal measures sepa-

rate Mandarin pairwise from Russian or English but not from

Greek or French. Both matrices, however, displayed substan-

tial confusion between each pair of languages.

G. Comparison between automatic and manual
segmentation

Our automatic SAs were designed to avoid the lan-

guage-specific aspects of human segmentation of speech.

Human segmentation inevitably reflects knowledge of the

language being labeled. Furthermore, automatic segmenta-

tion is inherently consistent and reproducible, while human

segmentation is not. Thus automatic and human segmenta-

tion will never agree entirely.

Manual segmentation of our large corpus is impractical.

Nevertheless, an important theoretical question remains: Does

human segmentation agree well enough with automatic seg-

mentation so that it would yield our basic findings on RMs

and on identification of different languages? A SA suitable for

quantifying rhythm should agree well with human labels on

longer vowels and obstruents, but it might well disagree on

less clear-cut cases such as sonorants or short vowels.

In order to get some grasp on this question, we selected

a new test set of 30 spoken paragraphs from our corpus, cov-

ering all five languages (each paragraph on average con-

tained 258 syllables). They were segmented by trained

phoneticians in the same way as the set originally used to

train the SAs (see Appendix A). One author segmented two

paragraphs. The remaining 28 were segmented by seven

other phoneticians, each from a different institution.

To compare SAs against the phoneticians, we applied

each of our three SAs to the test sub-corpus. We divided the

human labels into four broad categories: vowels, voiced

obstruents, voiceless obstruents, and sonorants. At each 10 ms

epoch of speech, we recorded both the broad human label and

the automatic label of “V,” “C,” or “S.” Then for each lan-

guage, we computed the percentage of co-occurrences of V,

C, or S within each broad human label.

We first present detailed results for the comparison with

SA2a, and then we consider differences between SA2a and

the other two algorithms. Algorithm SA2a treated human

labels for vowels or consonants as S on less than 1% of all

occasions. This mainly arose from differences in placement

of phrase-final and phrase-initial boundaries and from occa-

sional differences in segmentation of voiceless plosives.

Otherwise, agreement on identification of silences was

almost perfect. We therefore dropped silences from further

analysis.

Table III gives the percentages of V and C labels

assigned to each of the four broad human labels. Of the

epochs labeled as vowels by the phoneticians, 88%–93%

were tagged automatically as V, depending on the language.

The bulk of the disagreements concerned the high vowels

[i], [u], and [y] and the unstressed [@]. Less than 85% of

these cases were tagged by SA2a as V.

Voiceless obstruents were treated by SA2a as C in

83%–89% of the samples. More serious disagreement

appeared on the English [h], with a 61% tagging as V. (This

agrees with the view that in English, and possibly in other

languages, [h] is acoustically closer to approximants than to

other fricatives (cf. Ladefoged and Maddieson, 1996, p.

326). As expected, agreement between human and automatic

segmentation was worse for sonorants and voiced obstruents

than for voiceless obstruents. Sonorants were generally rec-

ognized as V (77%–91%). Voiced obstruents showed the

greatest discrepancies, with the voiced fricatives [v], [ð], [ ]

often recognized as vowels.

In short, segmentation algorithm SA2a successfully

identified most unreduced vowels as V and most voiceless

obstruents as C. It had learned the difference between more

and less sonorous segments, and it apparently applied criteria

similar to those used by phoneticians.

Algorithm SA2b used feature vectors rather than the

MFCC vectors implemented in SA2a. The former consis-

tently tagged vowels and voiceless obstruents as V (90%–

TABLE III. Percentage of times that SA2a assigned C or V labels to voice-

less obstruents, voiced obstruents, vowels and consonants within languages.

Voiceless obstr. Voiced obstr. Sonorant Vowel

C V C V C V C V

Russian 88 10 55 45 9 91 7 92

Greek 83 11 54 46 17 83 8 91

French 89 8 56 43 18 80 12 87

Chinese 86 11 41 59 22 77 10 89

English 84 11 75 22 15 83 11 88

FIG. 4. The location of the five languages on MDS map computed using

classifiers based on C-only measures or V/CV/ratio measures (V:

stress¼ 0.18, R2¼ 0.9, C: stress¼ 0.18, R2¼ 0.9).
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94%) and as C (79%–89%), respectively. Likewise, sonor-

ants were mainly marked as V (78%–88%). Voiced obstru-

ents showed the most variation, with patterns of tagging

similar to those for SA2a.

Algorithm SA1 employed simple acoustic criteria. It

mapped automatic labels onto the four human categories

slightly less consistently than its two more complex partners.

Only 79%–88% of vowels labeled by humans were marked

as V, while 79%–89% of voiceless obstruents were tagged

as C. A noticeable difference appeared in the tagging of

voiced stops as C between Russian, Greek, and French ver-

sus English (20%–30% vs 63%–79%). This reflects differen-

ces in the acoustic correlates of phonological voicing.

Finally, we recoded the labels assigned by the phoneti-

cians into three categories of Vowel, Consonant, and

Silence. The sonorants were coded as vowels. We treated

labels at each 10 ms epoch as separate observations, giving

4000–7000 observations for each test paragraph. We

excluded initial and final silences where they were labeled

by both sources. Cohen’s kappa was then used to compare

the automatic tags of V, C, and S against the three recoded

categories of human labels. This statistic measures overall

agreement between automatic and manual segmentations.

The box plots in Fig. 5 display the values of kappa for

agreement between each SA and the phoneticians for each of

the five language in our corpus. The median kappa value for

both SA2b and SA2a is about 0.75. This is interpreted as

“excellent agreement beyond chance.” The median kappa of

0.65 for SA1 suggests fair to good agreement (see Banerjee

et al., 1999, for further discussion of the use of kappa). There

was no consistent difference in recognition rates between the

languages.

IV. DISCUSSION

In order to study the nature and complexity of patterns

of durational variation as reflected by RMs, we analyzed a

large corpus of speech from five languages. Automatic seg-

mentation and machine classification were necessary to do

this. We obtained three major findings.

First, our procedures showed as expected that languages

have different durational patterns. Within-language variation

is so high, however, that it would appear impossible to iden-

tify one language reliably from RMs based on single para-

graphs. This conclusion agrees with results on human

language identification. Numerous studies show that when

listeners confront a processed signal lacking segmental infor-

mation, they cannot identify the originating language with

perfect accuracy. The exact success rate depends on experi-

mental conditions and on the languages. In studies with

low-pass filtering of speech from two languages, P(C) for

identification is around 0.63–0.68, above chance of 0.50 (see

Komatsu, 2007, for references). Our classifiers were at least

as accurate as that in identifying two languages.

Our second main finding is that no one RM or set of

RMs was the best for identifying all pairs of languages. The

most effective choice differed from one language pair to

another. In agreement with results reported by White and

Mattys (2007a) and Wiget et al. (2010), normalized vocalic

measures were generally more successful than consonantal

or non-normalized measures. Yet there was no consistent,

clear way to rank RMs. Specifically, no particular RMs con-

sistently outperform the others. Our results imply that

searching for the “best” RMs for separating all languages is

fruitless.

Indeed, it is hardly surprising that different measures are

optimal for identifying the members of different pairs of lan-

guages. Variation in duration is a product of many factors;

among them are stress, syllable complexity, realization of

individual sounds, and differences in sentence prosody, in

speech tempo and in subject-specific patterns. One or two

relatively simple measures would seem very inadequate for

capturing all possible differences in rhythm between all lan-

guages. Even if the measures were fine-tuned to capture one

specific contrast, such as temporal stress (cf. Wiget et al.,
2010), other factors would still vary across other pairs of lan-

guages/varieties. Moreover, our results suggest that the cor-

relation between the sort of information that is captured and

the resulting classification performance of a given RM is

generally weak and complicated.

Our third main finding is that three measures were nec-

essary to achieve optimal identification of all our five lan-

guages at once. Given that no single measure provided

optimal separation across all pairs of languages, it is only

logical that several measures should prove necessary to

achieve maximum identification of more than two languages.

Furthermore, the number of measures necessary to separate

the members of a given corpus might depend on the lan-

guages represented. There were many RMs and combina-

tions of RMs that were nearly equally good at classifying

our five languages, and almost any RM could be part of a

good combination. The average P(C) of 0.46 achieved by

classifiers using four RMs to identify five languages is com-

parable to human performance. For example, Navrátil

(2001) reported a P(C) of 0.49 (chance¼ 0.20) for identify-

ing German, English, French, Japanese, and Chinese.

FIG. 5. Average values of Cohen’s kappa between automatic and manual

segmentation for all five languages. The automatic labels for each para-

graphs in the test set were compared to manual labels for these paragraphs.

The whiskers indicate standard deviation. The Kappa values between 0.4

and 0.75 (dashed lines) are interpreted as “fair to good” agreement, the

Kappa values above 0.75 are interpreted as “excellent” agreement.
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Different patterns of grouping occurred among our five

languages, depending on the choice of RMs. The debate

around RMs has often been linked to the concept of rhythm

class, to the distinction between stress-timed and syllable-

timed languages and to the question of whether languages

form discrete classes or a continuum. The historical back-

ground of this debate and the arguments on both sides have

been widely discussed (see for example Ramus, 2002;

Keane, 2006). The “rhythm class” concept predicts that lan-

guages within the same class will overlap on RMs. We

observed such overlap. The concept, however, also requires

constant grouping patterns: languages from the same rhythm

class should always show greater confusion than languages

from different classes. We found no such constancy of con-

fusions within our five languages. Although Mandarin was

identified more readily from other European languages based

on vocalic measures, consonantal measures demonstrated no

such pattern. Different combinations of measures produced

different patterns of confusion between particular languages

or particular subgroups of languages.

This absence of a consistent confusion pattern fits with

the fact that the single RM yielding maximum identification

for two particular languages depended on the pair of lan-

guages. Furthermore, two languages that showed similar val-

ues on some RMs could still be separated on others. The

pattern of effective and ineffective RMs varied across pairs.

Claims about the similarity of two varieties based solely on

RMs seem to depend largely on the choice of measures and

on the expectations of the researcher (cf. also Arvaniti, 2009,

for similar remarks).

Perceptual studies have been offered as evidence for the

rhythm class concept. The listener’s native language, how-

ever, seriously influences the results of such studies, just as it

plays a crucial role in speech segmentation (cf. Murty et al.,
2007; Tyler and Cutler, 2009, and references therein)5.

Experiments with processed signals reveal that both infants

and adults are generally better at distinguishing their native

language from a foreign language than at distinguishing

between two foreign languages. For example, 5-month-old

American infants discriminated languages traditionally

assigned to different rhythm classes such as Italian and Japa-

nese. They also discriminated languages traditionally assigned

to the same rhythm class if one language was English but not

when both languages were foreign (Nazzi et al., 2000). Ramus

et al. (2003) found that French students could only discrimi-

nate at chance between processed Spanish and Catalan stim-

uli. In contrast, Bosch and Sebastian-Galles (1997) reported

that 4-month-old Spanish and Catalan infants discriminated

low-pass filtered versions of speech from the two languages.

Similarly, Szakay (2008) found that listeners who were highly

integrated into either of two ethnic communities were better

at discriminating processed signals representing the two eth-

nolects than were less integrated listeners.

Altogether, these studies provide little evidence for

grouping into internally consistent rhythm classes (cf. also

Arvaniti and Ross, 2010, for critical review of other studies).

Listeners apparently use different acoustic cues to discrimi-

nate between languages, and the cues depend on the listen-

er’s native language or familiarity with the languages being

tested. This undermines the use of perceptual results to but-

tress any particular grouping of languages into classes. The

reality of such classes becomes questionable.

Besides our main study with automatic segmentation

and identification of languages, we compared automatic and

manual segmentation of the same (necessarily limited) set of

texts. Excellent but not perfect agreement was found

between the labels from the two sources. The results have

two important consequences. First, they once again show

that segments placed by a human labeler in the same phono-

logical category may be assigned automatically to different

categories on the basis of purely on acoustic properties.

Human labelers apparently base their decisions not only on

the acoustic properties of the signal but also on their knowl-

edge of the phonological structure of the text being seg-

mented. Consequently, the segmentation rules may differ

from language to language, and RMs based on manual label-

ing may suffer from the influence of language-specific pho-

nological interpretations. Second, our comparison of human

and automatic labeling suggests that perception experiments

using substitution of segments (for example, substituting [s]

for all consonants and [a] for all vowels) reflect the investi-

gator’s own prior phonological interpretations. Future

experiments should employ signals with gradient transitions

between more and less sonorous synthetic segments.

V. CONCLUSIONS

On average, the languages that we studied with a lan-

guage-independent segmentation procedure proved to have

their own particular patterns of durational variation

(“rhythm”). However, there is substantial variation within

each language on every RM. Because of this variation, one

cannot reliably identify a language or determine its proper-

ties from published duration measures computed from a sin-

gle paragraph.

The differences between the five languages in our cor-

pus cannot be captured by only one RM. While most pairs of

languages could be separated fairly well with a classifier

based on just one carefully chosen RM, different pairs

needed different RMs. This suggests that languages differ

rhythmically in a variety of ways.

Combinations of three RMs were needed to reach the

highest correct identification rate for all five languages at

once. These findings and MDS show that linguistic rhythm is

a multidimensional system. However, there are many different

combinations of three RMs that are nearly equally effective.

Overall, our machine classifier results are as accurate as

human identification of languages in perception experiments.

Our results are not consistent with the traditional rhythm

class hypothesis that would put our languages into two (or

three) sharply defined classes. The rhythm class hypothesis

implies that many combinations of RMs would give the

same groupings of languages. Our data show that languages

group differently, depending upon which RMs are used to

classify them. Plausibly, each RM captures different lan-

guage properties.

Finally, human segmentation of a small sub-corpus of

speech agreed well with the labels produced by applying our
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SAs to that sub-corpus. There were systematic differences,

however, showing that manual labeling of speech depends

on phonological interpretations. Therefore, experiments that

compare manually obtained durations across two or more

languages have an intrinsic confound: they simply cannot

distinguish differences between languages from language-

dependent differences in the segmentation process.
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APPENDIX A: HTK-BASED SEGMENTATIONS

Segmentation algorithms SA2a and SA2b were devel-

oped using the standard HTK toolkit. Segmentation algo-

rithm SA2a uses three labels, Consonant, Vowel, and

Silence, that correspond to spoken consonants, vowels, and

silences, respectively. The Silence label captures silences at

the end of each utterance and between phrases. As a final

step in the processing, the algorithm merges runs of conso-

nants and of vowels into consonantal and vocalic regions,

respectively.

The acoustic model for Consonant contains four alterna-

tive, mutually independent sub-models, each roughly repre-

senting a major group of spoken phones. Each sub-model is

a three-state sequence, with looping allowed. Thus, conso-

nants are a minimum of 30 ms long. A state corresponds to a

relatively steady part of the phone: for example, it might

detect the moment of closure of a variety of stop consonants.

All consonant states share the same diagonal variance. The

Consonant model was trained on individual consonants, so

when it met a consonant cluster, it often recognized several

consonants in sequence.

The Vowel model uses six 3-state sub-models. It also

has another 36 sub-models designed to identify diphthongs.

A diphthong sub-model consists of the initial and middle

states of one vowel sub-model, then the middle and final

states of another. It, therefore, is four states long and shares

states with the vowel sub-models. Finally, the Silence model

is at least 100 ms long. This prevents it from responding to

short closures that may occur in stop consonants. One hun-

dred milliseconds corresponds roughly to the boundary

between short silences that often go unnoticed by listeners

and longer ones that are explicitly interpreted as pauses. The

Silence model is constructed from two 3-state and two 4-

state sub-models that can follow each other in any order, so

trajectories pass through multiples of ten states.

Algorithm SA2a was trained on 19 human-segmented

spoken paragraphs. Four professional phoneticians, includ-

ing three of the authors, independently labeled data in their

native language or in a language in which they were reason-

ably fluent. They used broad phonetic transcriptions and

were only given standard guidelines. The labels assigned by

phoneticians were recoded into three categories of Vowels,

Consonants, and Silences. The sonorants were recoded into

vowels. The final training data contained 9793 segments

(61% English, 18% French, 10% Greek, 9% Russian, 2%

Mandarin) that included sufficient admixtures of each lan-

guage to allow construction of a single set of Gaussian mix-

tures for Vowels, Consonants, and Silences for all five

languages in the corpus6.

The SA2a algorithm was trained to establish a rough

system using one mixture per state. Then the middle state of

each Consonant sub-model was extended to include a second

mixture, and the model was retrained. Adding the extra mix-

tures brought the complexity of the Consonant models closer

to that of the Vowel models. The retrained SA2a was used as

a recognizer on entire corpus of speech data exclusive of the

training data. The same acoustic models were used to recog-

nize the data from all languages. Speech was represented as

standard MFCC feature vectors. A grammar put two con-

straints on recognition: first, the sequence of phones that rep-

resent an utterance must start and end in a silence; and

second, two immediately successive silences are prohibited.

Segmentation algorithm SA2b generally follows SA2a

but with several changes. Sequences marked by the phoneti-

cians as entirely of consonants were mapped into a single

segment before training. Likewise pure sequences of vowels

in the training utterances were mapped first into a single

vocalic segment. For Consonant and for Vowel, SA2b has

only two sub-models each, and each of these has three states.

The Silence model has a minimum length of 130 ms. It con-

sists of a single sub-model that allows backward steps of 20–

80 ms. It thereby can avoid confusion by substantial, com-

plex repetitive structures within a silence, such as breathing

noises and lip smacks.

Like SA2a, the SA2b algorithm was trained once on the

human-segmented spoken paragraphs to establish a rough

model. Then the middle state of each Consonant and Vowel

sub-model was modified to include four mixtures. Four

selected states in the silence model were also enhanced to

four mixtures. After these alterations, SA2b was retrained

and finally used as a segment recognizer on the corpus of

speech. Audio processing for SA2b employed a 41-dimen-

sional Acoustic Description Vector as against the 26-dimen-

sional MFCCþ derivatives used in SA2a. The former larger

vector gives somewhat more emphasis to spectral shape and

uses only five components of derivative information.

The grammar for SA2b requires an alternation between

C and V segments, with occasional silences. So the algo-

rithm must try to model a complex consonant cluster with a

single phone. In contrast, SA2a can use several Consonants

in sequence to represent a consonant cluster. This is a sub-

stantial difference. It forces SA2b to represent a potentially

very complex consonant cluster with a single model limited

to three states. Unlike algorithm SA2a, SA2b needed no final
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stage to merge repeated pairs of consonants or repeated

vowel pairs. It also was subjected to the same two con-

straints on treatment of silences as was S2a.

APPENDIX B: BAYESIAN FORESTS OF LINEAR
DISCRIMINANT CLASSIFIERS

Each “classifier” used in this paper is actually a group of

240 closely related instances. This is a classifier forest

approach, inspired by Ho (1998). When applied to small data

sets, a forest has the advantage of reporting partial success as

well as reporting an item as correctly or wrongly classified.

Partial success occurs when some classifiers in the forest iden-

tify the item correctly while others treat it incorrectly; this

reduces statistical noise compared to using a single classifier.

More importantly, a forest provides a better assessment

of how accurately the classifier boundaries are known. Con-

ventional classifiers often report class boundaries, half-way

between the outliers of each class, as if they were precisely

known. A Bayesian forest samples all plausibly good classi-

fiers. Hence, the variation in boundary positions reflects the

true uncertainty about the underlying boundaries. Finally, the

various classifier instances can be combined into a ensemble

classifier that potentially generalizes to new data more reliably

than a single classifier (cf. Tumer and Ghosh, 1996).

The classifier forest is generated in two steps. First, the

data are randomly split into a training and a test set. Succes-

sive splits are anti-correlated, making the number of times

each item is chosen for a test set more uniform than expected

from independent random splitting.

Second, for each test-set/training-set split, a bootstrap

Markov Chain Monte Carlo (BMCMC) optimizer and sam-

pler (Kochanski and Rosner, 2010) generates linear discrimi-

nant classifiers that individually separate the data into N
classes as well as possible. Each classifier is a sample from

the distribution of all classifiers that are consistent with the

training set. [The BMCMC routine is implemented in the

stepper class in mcmc helper:py and BootStepper in

mcmc:py; these are available to download at Kochanski

(2010b).]

In a linear discriminant classifier, each class i has an

associated likelihood function,

Lið~cÞ ¼ ~ci �~vþ ai; (B1)

where ~v is the position at which evaluation is occurring, ci
!

are coefficients that describe the class, and ai relates to the

overall preference for class i. (Class i is a particular language

in our case.) The probability of assigning a given datum to

class i is

Pið~ciÞ ¼ Lið~ciÞ=
X

i

Lið~ciÞ: (B2)

(The final ai and ~ci can be both set to zero without loss of

generality, which we do.)

The probability density of sampling a particular ~C,

where C represents complete classifier forest, is the Bayesian

posterior probability, given the training data,

Pð~CÞ /
Y

j

Pdð~cjÞ: (B3)

Here j runs over all the training data, and d is the index of

the correct class for each datum. In this algorithm, we use a

prior probability distribution that assigns equal probability to

each class, and all the measurements are assumed to be

mutually independent.

This is a model that does not have sharp class boundaries.

Rather, at each point, there are probabilities that the datum

could be a member of any of the classes, and these probabil-

ities change smoothly. (Though the model can represent cases

with sharp class boundaries by making the change very rapid.)

The BMCMC sampler uses a bootstrap version of the

Metropolis algorithm (Metropolis et al., 1953). The algorithm

keeps track of the current value of ~C and attempts to change

it at each step. A change that increases Pð~CÞ is accepted, and
~C is moved to the new position. A change that decreases

Pð~CÞ is accepted with probability Pð~CnewÞ=Pð~ColdÞ. Equation

(B3) is written as a proportionality, because the denominator

of Bayes’ theorem is an impractical multidimensional integral

that (fortunately) is independent of ~C; this independence

allows computation of the step acceptance probability without

the need to integrate.

The BMCMC algorithm generates changes by making steps

proportional to differences among an archive of its previous

positions. It is described more fully in Kochanski and Rosner

(2010); it has been used in prior work, notably Alvey et al.
(2008) and Braun et al. (2006), and is available for download

(Kochanski, 2010b). It is first run to convergence (via

stepper:run to bottom in mcmc helper:py) and then run

to generate (in this instance) 20 samples of ~C from the

distribution of classifiers for each test/training split. (via

stepper:run to ergodic in mcmc helper:py). These samples

are chosen with a probability that reflects how well Eq. (B3)

matches the available data; thus most samples will come from

the vicinity of the maximum likelihood classifier.

One can define confidence regions from these samples.

In particular, if the actual data are generated from Eq. (B2),

there is a 95% chance that the underlying parameters used to

generate the data will lie within a confidence region that con-

tains 95% of the generated samples.

The classifications that the algorithm produces (and the

class boundaries) are simply the class that gives the largest prob-

ability in Eq. (B2), or (equivalently) the maximum likelihood

class [Eq. (B1)]. Class boundaries are convenient for visual dis-

play. More importantly, a “hard” classification is useful because

it leads to a good (and easily understandable) measure of the

classifier performance: the probability of correct classification.

The work here used the qd classifier program with the

-L flag to produce linear discriminant classifier forests. The

-group flag was used to extract the speaker identification,

making the classifier group data by speakers. The classifier

code is available for download (Kochanski, 2010a). Related

code, l classifier, is also available and recommended for

items that are nearly independent.

In qd classifier, the data are split into test and training

sets via the bluedata groups class in data splitter:py.

(We use 12 splits in this work.) This splitting is a two-pass
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algorithm and is a stratified sampling scheme. First, we assign

a group (a subject in our case) to either the test or the training

set. This assignment is anti-correlated with previous assign-

ments. For example, if in previous splits, subject D3 has not

yet been assigned to the test set, D3 is more likely to be

assigned this time.

This procedure insures that data from a given speaker

never appear in both the training and test set. A classifier’s

success rate therefore does not measure its ability to learn

the quirks of any individual speaker. Rather, it measures

only the properties shared by the entire sample of speakers.

In the second pass the algorithm samples (without replace-

ment) from each speaker, so that the test and training sets have

nearly the same fraction of items from each class. This sam-

pling is also done in an anti-correlated fashion, so that all items

will be in the test set nearly the same number of times.

Our hybrid scheme of using multiple training/test-set

splits combined with a Bayesian sampling of classifiers with

each training set is well-behaved even in cases where there

are only a few groups. For instance, in a data set with only

four groups (e.g., four experimental subjects), there are only

four ways to make a split into a training set and a test set that

hold 75% and 25% of the data, respectively. If more than

four samples are needed, e.g., to compute error bars for the

probability of correct classification, the Bayesian procedure

can still generate multiple samples from each training set.

Multiple test-set/training-set splits are valuable, because

real data are probably not generated from Eq. (B2) and utter-

ances are generally not independent. Properties of utterances

can be correlated with each other for many reasons, but the

most common and often the most important one is that the

same person generates them. If each individual has a differ-

ent voice or style of speech, inter-speaker variation can be

much larger than the variation within an individual’s utteran-

ces. In such a case (as here), two utterances from the same

speaker are not independent because one can use the proper-

ties of the first to predict the properties of the second.

If utterances are not independent, samples drawn from a

BMCMC sampler based on Eq. (B3) will give an overly

narrow distribution of ~C, because Eq. (B3) falsely assumes

independence. In an extreme case where inter-speaker varia-

tion dominates and there are many utterances per speaker

(Nups � 1), error bars would be underestimated by a factor

of N
1=2
ups , causing false significances in hypothesis tests.

This problem is germane to all work where statistical

tests do not account for inter-speaker variation; many pub-

lished papers suffer from it, not just Markov chain Monte

Carlo samplers. Our solution is to compute a new group of

BMCMC samples for each test/training-set split. Each split is

approximately a bootstrap (Efron, 1982) sample of speakers,

thereby capturing the inter-speaker variation. Within each

split, the BMCMC sampler reflects intra-speaker variation,

and the overall result reflects the full variability of speech.

1Ramus et al. (1999) suggested that infants perceive speech as a succession of

vowels alternating with periods of unanalyzed noise. Gerhardt et al. (1990)

measured the intrauterine acoustic environment of fetal sheep. They found

that high frequencies are somewhat attenuated, but with only a single-pole

filter. As a result enough high frequency information remains so a fetus could

potentially discriminate among the consonants or among the vowels.

2Read speech was preferred as it allows better control over the segmental

content. The extent to which our results apply to spontaneous conversa-

tional speech remains an open question.
3Previous studies have reported changes in speech of long-term migrants or

even proficient speakers (see De Leeuw et al., 2009, for references). How-

ever, all these studies concerned immigrants who lived abroad for a con-

siderably longer period of time—at least a decade but usually more than

25 years—than had our non-native speakers. There is no evidence of sub-

stantial changes to L1 after only several years of living abroad. Further-

more, research on language attrition shows that the susceptibility to L1

attrition decreases after puberty (see Bylund, 2009, for review). The mean

age of arrival into the United Kingdom for our non-English speakers is 24

yr. Therefore even if our non-native speakers showed any adaptation to

English rhythm it is unlikely to substantially affect the results of this

study.
4More generally, by N-1 dimensional hyperplanes for an N-dimensional

classifier.
5The effect of native language on the perception of rhythm even extends

beyond the domain of speech. In their study of the perception of rhythmic

grouping of nonlinguistic stimuli by English and Japanese listeners, Iversen

et al. (2008) showed that language experience can shape the results.
6The asymmetry of the training set does not disturb the main point of the

procedure: it is a strictly language-independent segmentation, since the

same models are applied to all languages. Use of a symmetrical dataset

would be unlikely to have any major effect on the results of this paper.

The comparison between the HTK-based segmentation algorithms and a

substantially different, simpler algorithm (SA1) revealed only a small

effect of segmentation on the classification results.
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and G. Ferré (Université Nantes, Nantes), pp. 15–20.

Bosch, L., and Sebastian-Galles, N. (1997). “Native-language recognition

abilities in 4-month-old infants from monolingual and bilingual environ-

ments,” Cognition 65, 33–69.

Braun, B., Kochanski, G., Grabe, E., and Rosner, B. S. (2006). “Evidence

for attractors in English intonation,” J. Acoust. Soc. Am. 119, 4006–4015.

Bylund, E. (2009). “Maturational constraints and first language attrition,”

Lang. Learn. 3, 131–715.

Dauer, R. (1983). “Stress-timing and syllable-timing reanalyzed,” J. Pho-

netics 11, 51–62.

Davis, S., and Mermelstein, P. (1980). “Comparison of parametric represen-

tations for monosyllabic word recognition in continuously spoken

sentences,” IEEE Trans. Acoust., Speech, Signal Process. 28, 357–366.

De Leeuw, E., Schmid, M. S., and Mennen, I. (2009). “The effects of con-

tact on native language pronunciation in an L2 migrant setting,” Bilingual-

ism: Lang. Cognit. 13, 33–40.

Dellwo, V. (2006). “Rhythm and speech rate: A variation coefficient for

DC,” in Language and Language Processing: Proceedings of the 38th
Linguistic Colloquium, Piliscsaba 2003 (Peter Lang, Frankfurt), pp.

231–241.

Dellwo, V., Fourcin, A., and Abberton, E. (2007). “Rhythmical classifica-

tion of languages based on voice parameters,” in Proceedings of the

J. Acoust. Soc. Am., Vol. 129, No. 5, May 2011 Loukina et al.: Dimensions of durational variation in speech 3269

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



International Congress of Phonetic Sciences (ICPhS) XVI, August 6–10,

Saarbrücken, pp. 1129–1132.

Deterding, D. (2001). “The measurement of rhythm: A comparison of Singa-

pore and British English,” J. Phonetics 29, 217–230.

Efron, B. (1982). “The jackknife, the bootstrap, and other resampling plans,”

number 38 in CBMS-NSF Regional Conference Series in Applied Mathe-
matics (SIAM, Philadelphia), 92 p.

Ferragne, E., and Pellegrino, F. (2004). “A comparative account of the

suprasegmental and rhythmic features of British English dialects,” in Actes
de Modelisations pour l’Identification des Langues, November 29–30,

Paris, pp. 121–126.

Galves, A., Garcia, J., Duarte, D., and Galves, C. (2002). “Sonority as a ba-

sis for rhythmic class discrimination,” in Speech Prosody 2002, Aix-en-

Provence, pp. 323–326.

Gerhardt, K., Abrams, R., and Oliver, C. (1990). “Sound environment of the

fetal sheep,” Am. J. Obstet. Gynecol. 162, 282–287.

Grabe, E., and Low, E. L. (2002). “Durational variability in speech and the

rhythm class hypothesis,” in Laboratory Phonology, Vol. 7, edited by

C. Gussenhoven and N. Warner (Mouton de Gruyter, Berlin, Germany),

pp. 515–546.

Ho, T. K. (1998). “The random subspace method for constructing decision

forests,” IEEE Trans. Pattern. Anal. Mach. Intell. 20, 832–844.

Iversen, J. R., Patel, A. D., and Ohgushi, K. (2008). “Perception of rhythmic

grouping depends on auditory experience,” J. Acoust. Soc. Am. 124,

2263–2271.

Keane, E. (2006). “Rhythmic characteristics of colloquial and formal

Tamil,” Lang. Speech 49, 299–332.

Kochanski, G. (2010a). “Python package g_classifiers-0.30.1,” University of

Oxford, https://sourceforge.net/projects/speechresearch/files/g_classifiers/g_clas-

sifiers-0.30.1/g_classifiers-0.30.1.tar.gz/download (Last viewed August 12,

2010).

Kochanski, G. (2010b). “Python package gmisclib-0.67.9,” University of

Oxford, https://sourceforge.net/projects/speechresearch/files/gmisclib/gmi-

sclib-0.67.9/gmisclib-0.67.9.tar.gz/download (Last viewed August 12,

2010).

Kochanski, G., Grabe, E., Coleman, J., and Rosner, B. (2005). “Loudness

predicts prominence: Fundamental frequency lends little,” J. Acoust. Soc.

Am. 118, 1038–1054.

Kochanski, G., Loukina, A., Keane, E., Shih, C., and Rosner, B. (2010).

“Long-range prosody prediction and rhythm,” in Proceedings of Speech
Prosody 2010, Chicago, 100222, pp. 1–4.

Kochanski, G., and Orphanidou, C. (2008). “What marks the beat of

speech?” J. Acoust. Soc. Am. 123, 2780–2791.

Kochanski, G., and Rosner, B. S. (2010). “Bootstrap Markov chain Monte

Carlo and optimal solutions for the Law of Categorical Judgment

(corrected),” arXiv:1008.1596. http://arxiv.org/abs/1008.1596 (Last

viewed August 12, 2010).

Komatsu, M. (2007). “Reviewing human language identification,” in Speaker
Classification II (Springer-Verlag, Berlin, Heidelberg), pp. 206–228.

Ladefoged, P., and Maddieson, I. (1996). The Sounds of the World’s Lan-
guages (Blackwell, Oxford), p. 326.

Lee, C. S., and Todd, N. P. M. (2004). “Towards an auditory account of

speech rhythm: Application of a model of the auditory ‘primal sketch’ to

two multi-language corpora,” Cognition 93, 225–254.

Liss, J. M., White, L., Mattys, S. L., Lansford, K., Lotto, A. J., Spitzer,

S. M., and Caviness, J. N. (2009). “Quantifying speech rhythm abnormal-

ities in the dysarthrias,” J. Speech Lang. Hear. Res. 52, 1334–1352.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and

Teller, E. (1953). “Equations of state calculations by fast computing

machines,” J. Chem. Phys. 21, 1087–1091.

Murty, L., Otake, T., and Cutler, A. (2007). “Perceptual tests of rhythmic

similarity: I. Mora rhythm,” Lang. Speech 50, 77–99.

Navrátil, J. (2001). “Spoken language recognition—A step towards multilingual-

ity in speech processing,” IEEE Trans. Speech Audio Process. 9, 678–685.

Nazzi, T., Jusczyk, P. W., and Johnson, E. K. (2000). “Language discrimina-

tion by English-learning 5-month-olds: Effects of rhythm and familiarity,”

J. Mem. Lang. 43, 1–19.

Nazzi, T., and Ramus, F. (2003). “Perception and acquisition of linguistic

rhythm by infants,” Speech Commun. 41, 233–243.

Nolan, F., and Asu, E. L. (2009). “The pairwise variability index and coex-

isting rhythms in language,” Phonetica 66, 64–77.

Ramus, F. (2002). “Acoustic correlates of linguistic rhythm: Perspectives,”

in Speech Prosody 2002, Aix-en-Provence, pp. 115–120.

Ramus, F., Dupoux, E., and Mehler, J. (2003). “The psychological reality of

rhythm classes: Perceptual studies,” in Proceedings of the 15th ICPhS
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