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Abstract
This paper presents techniques for objective characterisation of Automatic Speech-to-Phoneme Alignment (ASPA) systems, 
without the need for human-generated labels to act as a benchmark. As well as being immune to the effects of human 
variability,  these  techniques  yield  diagnostic  information  which  can  be  helpful  in  the  development  of  new alignment 
systems, ensuring that the resulting labels are as consistent as possible. To illustrate this, a total of 48 ASPA systems are 
used,  including three  front-end  processors.  For  each  processor,  the  number  of  states  in  each  phoneme model,  and  of 
Gaussian distributions in each state mixture, are adjusted to generate a broad variety of systems. The results are compared 
using a statistical measure and a model-based Bayesian Monte-Carlo approach. The most consistent alignment system is 
identified, and is (as expected) in close agreement with typical “baseline” systems used in ASR research.
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 1. Introduction
Manual labelling of large databases necessitates the use of 
teams  of  labellers,  and  the  individuals  within  the  team 
invariably  differ  in  the  detailed  interpretation  of  any 
labelling guidelines they have been given (Lander, 1997). 
The  effect  of  these  differences  could  be  minimised  by 
getting  a  number  of  labellers  to  label  the  data 
independently,  and  then  to  take  the  median  position  (for 
example) of each label as being the “correct” value. This is 
impractical for databases of any significant size, and so it is 
preferable to automate as much as possible of the labelling 
process. Not only does this reduce the cost of the process, 
but it also has the potential to reduce inconsistencies in the 
labels,  due  to  factors  such  as  the  subjectivity  of  visual 
perception of spectrogram data.

Automatic  Speech-to-Phoneme  Alignment  (ASPA) 
systems  are  designed  to  respond  consistently  to  well-
defined  features  of  the  acoustic  signal,  and  will  always 
produce  the  same results,  when presented  with  the  same 
data.  They  are  not  influenced  by  the  inconsistencies  of 
human perception.

HMMs  are  often  used  for  ASPA,  and  although  each 
system is repeatable, each may focus on different aspects of 
the  speech,  resulting  in  discrepancies  between  the  labels 
from different systems.

To  identify  which  of  these  systems  gives  the  most 
authoritative labels, we have compared a very large number 
of alignment results from different ASPA systems, and used 
these comparisons to evaluate each system’s performance. 
Those labels which are positioned consistently with respect 
to those of other systems are deemed reliable and are then 
used  to  decide  on  the  relative  merits  of  the  different 
systems as a whole.

 2. Experiments
A total  of  48  ASPA systems  were  built  using  the  HTK 
HMM Toolkit (Young et al., 2006). The systems varied in 
the number of states per phoneme, the number of Gaussian 
components  per  mixture,  and  the  initial  front-end 
processing used to produce the observation vectors.

 2.1. Data
The experiment used an ad hoc corpus assembled for other 
purposes.  The  34  subjects  were  all  speakers  of  Standard 
British English, and the utterances consisted of both single 
words and complete sentences. The recordings were made 
with  different  equipment  and  at  different  sampling rates, 
but all were digitally re-sampled to 16 kHz using the “rate” 
operation  of  SoX  (SoX,  2009).  Overall,  the  database 
consists of just over 23,000 utterances,  making a total of 
48,000 spoken words taken from a vocabulary of 16,000.

 2.2. Front-end Processing
The  three  different  pre-processors  chosen  were  Mel-
Frequency  Cepstral  Coefficients  (MFCCs),  Linear 
Prediction  (LP)  Cepstrum,  and  Auditory  Description 
Vectors. All were computed at 12.5 ms intervals.

MFCCs are  the  de  facto  standard  baseline  for  most 
speech  recognition  experiments.  The  HTK  MFCC_D_0 
implementation  was  used,  i.e.  13 MFCC  coefficients 
(including the zeroth energy coefficient)  with 13 dynamic 
(“delta”) coefficients, with an analysis window of 25 ms.

Linear  prediction  cepstral  coefficients are  broadly 
similar to MFCCs, but with frequency domain smoothing 
being an inherent part of the spectral analysis, rather than 
the  perceptually  based  “filter-bank”  smoothing  of  the 
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MFCC. We used the LPCEPSTRA_E_D front-end of HTK, 
giving 13 static coefficients, including the energy, together 
with  13 dynamic  coefficients,  again  with  an  analysis 
window of 25 ms.

Auditory  Description  Vectors (ADVs),  proposed  in 
(Kochanski  and  Orphanidou,  2007),  were  designed  to 
mimic  human  perception  of  phonemes.  The  vector  used 
here  is  derived  from  Equation  2  of  Kochanski  and 
Orphanidou  by  a  dimensionality-reducing  linear 
transformation which yields 19 coefficients.

The transformation is designed to maintain the distance 
between phonetically dissimilar data in a fashion similar to 
Linear Discriminant Analysis,  as described in (Sebestyen, 
1962) and applied to auditory data in (Beet and Gransden, 
1992).

The definition for the initial acoustic description vectors 
differs  slightly  from that  in  (Kochanski  and  Orphanidou, 
2007): primarily, a shorter time domain smoothing window 
is used here. The vector consists of:
• The  loudness  in  1 erb-wide  (Moore  and  Glasberg, 

1983)  bins,  smoothed  with  a  60 ms  wide  1+cos2 

window.
• Five  broader-band  spectral  features  computed  from 

20 ms windows.
• Five  broad-band  edge  detectors,  taking  a  difference 

across a 40 ms interval.
• Two  entropy  features.  One  is  the  entropy  of  the 

spectrum (computed over a 30 ms window). The other 
is a space-time entropy in a 70 ms window, which will 
also pick up changes from one frame to the next. The 
latter tends to be higher at phoneme edges and in rough 
voicing.

• Two  voicing  features.  One  derived  from  the  entire 
signal, the other from the high-frequency parts (above 
1 kHz).

• One “roughness” feature inspired by (Hutchinson and 
Knopoff, 1978). This is designed to reflect fluctuations 
in  the  neural  firing  rate  on  3-30 ms  time  scales.  It 
would be large if fed a pair of pure tones 50 Hz apart, 
but small if the tones were 1 Hz apart or 1000 Hz apart.

• Finally, one pseudo-duration feature (Kochanski et al., 
2005) which has a variable window width, but one that 
is comparable to the phoneme duration.

This 51-dimensional representation is then reduced to 19 
dimensions by retaining the largest terms in an eigenvalue 
expansion.

 2.3. HMM Training
All the phoneme strings to be aligned with the speech were 
based  on  a  lexicon  compiled  from  diverse  sources.  An 
optional  short-pause phoneme was added between words. 
No  post-lexical  rules  were  applied,  so  the  phonetic 
transcriptions will have some inaccuracies.

All  the  aligners  compared  in  this  work  were  based  on 
broadly  similar  Continuous-Density  Hidden  Markov 
Models  (CD-HMMs),  implemented  using  HTK.  The 
number of states and the numbers of Gaussian mixtures in 
each state were varied to evaluate the effects of changing 
these parameters.

The training process was similar for all the experiments: it 
used  “embedded  re-estimation”  using  the  Baum-Welch 

algorithm  (Young  et  al.,  2006),  applied  in  three  phases 
(Baghai-Ravary, 1995), with four training iterations at each 
stage.:
• Training from flat-start HMMs, initialised to the global 

means  of  all  the  training  data,  to  produce  single-
mixture phoneme, silence, and short-pause models

• Disambiguation  of  alternative  pronunciations 
(including presence  or  absence  of inter-word pauses) 
followed by re-training of the models

• Disambiguation  as  before,  and  an  increase  in  the 
number of mixtures in each state (using a randomised 
duplication of each existing mixture), followed by final 
re-training of the full models.

 3. Differences Between Systems
The methods described here assess the relative performance 
of each alignment system in terms of how consistently the 
labels  are positioned, relative to other occurrences  of the 
same label  identified by other systems. The word “label” 
here denotes the transition from one phoneme to another. 
The  former  will  produce  close  to  2000  potential  label 
identities, making it difficult to present and generalise the 
results.

By using broad phonetic classes instead of phonemes, the 
number of statistics can be reduced to 55, and the statistics 
themselves become more reliable, being derived from many 
more observations.

 3.1. Pairwise Variance
The  simplest  approach  to  measuring  differences  between 
ASPA systems  is  to  compute  the  mean  and  variance  of 
corresponding labels for each pair of systems. If there are 
large mean differences between the labels produced by two 
systems, it does not necessarily imply that either system is 
poor, just that they have systematically different definitions 
for where one phoneme stops and the next one starts. It is 
only if the variance of the time differences is large that one 
system can be said to be inconsistent with the other. Thus 
the reliability of a set of HMM alignments can be assessed 
by  the  variances  of  the  discrepancies  in  its  labels  with 
respect to the other systems.

Suppose that  one  had a “bad”  alignment  system where 
label position is very sensitive to small changes in the local 
acoustic  properties.  Contrast  this  with  a  “good”  system 
where  small  changes  in  the  acoustical  properties  lead  to 
small changes in the label positions. When we calculate the 
differences  between  corresponding  phonemes,  we  are 
essentially giving a random sample of acoustical properties 
to the systems. The variance of the difference will then be 
related to the strength of the relationship between acoustical 
properties  and  timing.  Generally,  greater  sensitivity  of 
either  system  will  lead  to  a  larger  variance  of  the 
differences.1 A high sensitivity of either system implies a 
large variance. Conversely, if a given system always yields 

1 Potentially the two systems might have large but nearly 
identical dependences on the local acoustical properties, 
but it is unlikely, given that representations are many-
dimensional, and therefore there are many ways to 
differ. Therefore this possibility is ignored.



a small variance when compared with other systems, it is 
likely to be “good” in the sense of having a relatively small 
sensitivity  of  phoneme  boundary  position  to  acoustic 
properties.

The  variance  observed  for  different  phoneme-class  to 
phoneme-class transitions can be quite different. Labels for 
vowel-to-liquid transitions, for example, often differ widely 
without  being  fundamentally  “wrong”,  because  human 
labellers  treat  such  transitions  as  broad  and  unclear.  To 
avoid the necessity of modelling these variances in detail, 
we order the different systems’ results for each phoneme-
class  to  phoneme-class  transition  according  to  their 
variances. Then, to decide which system is most consistent, 
we calculate  the mean ranking of the system’s phoneme-
class  to  phoneme-class  discrepancies  against  all  other 
systems.  In  this way,  we make no assumptions regarding 
the range of variances, or even the inherent linearity of the 
scale.

A  low  ranking  implies  that  the  system  is  generally 
consistent with many of the other systems and thus that the 
positions of the labels it generates are relatively insensitive 
to  small  changes  in  acoustic  properties.  Such  a  system 
presumably  responds  to  the  most  reliably  identifiable 
features of the acoustic signal. Conversely a system with a 
lot  of  random  variability  would  have  a  high  rank, 
suggesting that it responds to incidental acoustic properties.

 3.2.  Parametric Bayesian Models
Another,  parallel  analysis  builds  a  model  that  predicts 
where  a  given  aligner  will  mark  a  given  boundary.  We 
search for the parameters of this model that best explain the 
observed  boundary  positions;  some  of  the  parameters 
correspond to systematic differences from one system to the 
next; other parameters correspond to the consistency of a 
system.

 3.2.1. Phoneme “Detectivity”
We assume that (for a given alignment system) each class 
of phonemes tends to be systematically longer  or  shorter 
than the overall average. This can be thought of as a class-
dependent  and  aligner-dependent  “detectivity”.  A  given 
aligner  tends  to  be  more  sensitive  to  certain  phonemes: 
phonemes that an aligner detects more easily tend tend to 
expand  in  both  directions;  phonemes  that  are  not  easily 
detected  by  an  aligner  tend  to  have  shorter  lengths  than 
nominal.

Qualitatively, imagine a slice of sound in an ambiguous 
region2 between two phonemes: the sound is intermediate 
between  the two,  but  whichever  phoneme is  easier  for  a 
given system to detect will win. Quantitatively, if  C is the 
broad phonetic class of a phoneme, we write:

detectivity=d C ,aligner 
In this model, the boundary shift is:
 t=ab∗d Ca , aligner −d C b , aligner 

where σab is the standard deviation observed between the 
labels for transitions from class Ca to class Cb. The result of 

2 The ambiguity can be either intrinsic in the sound or it 
could be due to a sharp acoustic boundary falling near 
the middle of a window used for front-end processing.

this model is that phonemes with a larger detectivity for a 
given system will tend to be longer. Ambiguous boundaries 
will  tend  to  have  larger  values  of  σab  and  would  be 
expected to have larger systematic shifts, Δt.

Another  motivation  for  this  model  is  that  it  expresses 
diphone properties  in  terms  of  phoneme properties.  That 
means you only need c. 45 numbers to predict the boundary 
positions for all (over 1000) diphones. To the extent that it 
works  well,  it  makes  the  overall  results  much  easier  to 
compute and understand.

 3.2.2. Interpretation
This  model  predicts  systematic  differences  between  one 
aligner  and  another,  but  there  are  also  disagreements 
between aligners that are not predictable from a knowledge 
of the two neighbouring phones. The standard deviation of 
these  unpredictable  disagreements  is  the  σab value 
mentioned above.

We assume that σab can be approximated as:
ab=K aligner ∗KC Ca ,C b∗ global

so that some aligners are proportionally better than others 
(expressed by Kσ), and that some class-to-class boundaries 
are easier to mark than others (Kc).

The smaller Kσ is, the better the aligner. The bigger Kc is, 
the more difficult it is to define the boundary between two 
phoneme  classes.  The  factor  allows  us  to  compare 
diphones.  Finally,  σglobal (which  is  a  single,  overall 
parameter)  is  the  typical  size  of  disagreements  between 
aligners.

Overall,  between  detectivities  and  Kσ values,  Kc values 
and σglobal, there are 144 parameters in our current analysis. 
To  estimate  these  parameters  we  have  used  an  adaptive 
Markov-Chain  Monte-Carlo  process  (Kochanski  and 
Rosner, 2009). This algorithm can provide statistically valid 
confidence intervals for its parameters.

 4. Results

 4.1. Pairwise Variance Results
For  each  front  end,  the  optimum  (i.e.  most  mutually-
consistent)  set  of  HMM  training  parameters  was  found 
using  the  approach  described  in  section  3.1  above.  The 
results  for  each  front-end  are  shown  separately  below 
(Figures 1 to 3). In these figures, a rank of zero means that 
the respective ASPA system agrees more closely than any 
other with at least one system, for all broad-class phoneme 
transition labels.



Figure 1: Inconsistency between labels, expressed as the 
mean rank of systems with MFCC front ends

Figure 2: Inconsistency between labels of systems with
LP Cepstrum front ends

Figure 3: Inconsistency between labels of systems with
ADV front ends

Each  of  Figures 1  to  3  was  derived  from 16  different 
systems,  giving  120  (i.e.  (16 * 15) / 2)  different  system 
pairs, and the maximum possible rank of 105. Thus a rank 
of  105  would  mean  that  the  respective  ASPA  system 
always had a worse discrepancy than any of the others.

It is clear from these results that, regardless of front-end, 
4 states per phoneme always gives the best performance (or 
very close to it). The optimal number of mixtures is either 2 
or 4 depending on the front-end.

The results  for  all  front  ends,  for 4 states per phoneme 
and 2 and  4 mixture  components,  are  shown together  in 
Figure 4.

Figure 4: Inconsistency between labels of the best systems 
for each front end (4 states and 2 or 4 mixtures)

 4.2. Parametric Bayesian Results
The figures below show system performance vs. front end, 
number of  Gaussians  per  state,  and number of states  per 
phoneme, as quantified by the equation:

 aligner =K aligner  global

as  derived  from  the  parametric  Bayesian  models.  This 
reflects each alignment system's overall inconsistency: it is 
the geometric mean of  σab for a system. The panels show 
the MFCC-based aligners  (Figure  5),  LPC-based aligners 
(Figure 6) and ADV-based aligners (Figure 7). The vertical 
axis represents the standard deviation in seconds.

Note that the ADV plot in Figure 7, below, has a very 
different structure to those of the “traditional” MFCC and 
LP Cepstrum front-ends.

Figure 5: Alignment discrepancy standard deviations
(in seconds) for systems with MFCC front ends

Figure 6: Alignment discrepancy standard deviations
(in seconds) for systems with LP Cepstrum front ends
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Figure 7: Alignment discrepancy standard deviations
(in seconds) for systems with ADV front ends

 4.3. Discussion
As can be seen in Figures 5 to 7, the Parametric Bayesian 
analysis gives very much the same qualitative results as the 
pairwise-variance-based analysis for the MFCC and LPC-
based analyses:  the number of states is the critical factor. 
Three or four states are much better than one or five, as can 
be seen by the lower  values  in  the central  two columns. 
Four states are slightly preferred to three. For both analyses, 
the number of Gaussians per state makes little difference to 
the performance as long as there is more than one.

However,  the  ADV results  are  rather  more  difficult  to 
reconcile  in  the  case  of  single  mixtures:  parametric 
Bayesian  results  are  surprisingly  good  in  this  case,  both 
relative  to  those  calculated  by  pairwise  variance,  and 
relative  to  the  parametric  Bayesian  results  for  larger 
numbers of mixtures.

Overall,  MFCC  performance  is  better  than  LPC  by 
approximately  15%  and  in  this  analysis,  both  LPC  and 
MFCC are dramatically better than the ADV-based systems 
(with standard  deviations  roughly three  times larger).  As 
most of the windows involved in the ADV calculations are 
larger than the 25 ms windows used in LPC and MFCC, it 
is  not  too  surprising  that  the  ADV  captures  timing  less 
precisely and therefore gives less precise labels.

As regards the diagnostic value of these analysis methods, 
Figures 1 to 4 show that there is a fundamental difference 
between the ADV processor and the others. This difference 
manifests  itself  as  a  bias  towards  models  with  fewer 
mixture components but more states. This suggests that the 
ADV processor may be responding to temporal features on 
a different scale from conventional methods.

The  ADV  front  end  may  be  better  at  resolving  sub-
phonemic details, and that would also explain its apparent 
variability in the exact timing of its boundaries: it may be 
responding to sub-phonemic details in the acoustic signal, 
which are invisible in the other processors.

 5. Conclusions
Both  the  “pairwise  variance”  and  “parametric  Bayesian” 
methods show that the LP Cepstrum front end is roughly 
comparable to MFCCs, but the current implementation of 
Auditory  Description  Vectors,  at  least  for  the  specific 
phoneme  alignment/labelling  task  described  here,  is  less 
accurate.  For  this  task,  the  pairwise  variance  analysis 
suggests the optimal HMM configuration uses 4 states per 

phoneme model  and  2  mixture  components  with  the  LP 
Cepstrum  front  end.  The  parametric  Bayesian  analysis 
prefers  MFCCs,  with  4  states  and  4  mixtures,  but  the 
differences  between  the  two  systems  are  small  for  both 
analysis methods.
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Thus it can be inferred that MFCCs and LP Cepstra are 
broadly similar, the best number of states per phoneme is 4, 
with 2 to 4 Gaussians  per  mixture.  This is  slightly more 
states  than  are  normally  used  in  ASR  (i.e.  3),  and 
significantly  fewer  Gaussians  than  most  speaker-
independent  ASR  systems  (8  or  more).  The  most  likely 
reason for this small number of mixtures is that the results 
presented  here  were  derived  from  examples  of  a  single 
dialect.  A  more  diverse  range  of  speakers  would  be 
expected to require more Gaussians per state.

More  importantly,  we  have  demonstrated  two  related 
methods for quantifying the reliability of labelling systems 
from  the  discrepancies  between  labels  from  a  cohort  of 
automatic systems, without any manually created reference 
labels.  This  facilitates  rapid  progress  in  optimising  the 
design of any alignment system, and frees that process from 
the need for extensive manual intervention.
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