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Abstract

We compare 15 measures of speech rhythm based on an
automatic segmentation of speech into vowel-like and
consonant-like regions. This allows us to apply identical
segmentation criteria to all languages and to compute rhythm
measures over a large corpus. It may also approximate more
closely the segmentation available to pre-lexical infants, who
apparently can discriminate between languages. We find that
within-language variation is large and comparable to the
between-languages differences we observed. We evaluate the
success of different measures in separating languages and
show that the efficiency of measures depends on the languages
included in the corpus. Rhythm appears to be described by two
dimensions and different published rhythm measures capture
different aspects of it.

Index Terms: linear discriminant typology acoustic phonetics
speech segmentation experimental

1. Introduction

The rhythm of speech is a subjective impression which is
presumably derived from acoustic properties. Recently,
various quantitative statistical indices have been proposed to
capture the rhythmic properties of languages. We follow Barry
et al. [1] and collectively call these indices rhythm measures
(RMs).

To date, observed differences in RMs have generally been
interpreted as differences between languages or groups, but
recent studies have revealed substantial variability between
speakers and texts. For example, Keane [2] showed that
differences between Tamil speakers exceeded those separating
different languages.

Furthermore, most current measures rely on manual
segmentation, which can be a very subjective process.
Previous studies have emphasized potential ambiguities and
discrepancies in manual segmentation [cf. 3]. As Ramus [4]
has pointed out, discrepancies between labelling principles
make it ‘virtually impossible’ to ensure consistent
segmentation between different studies.

In this paper we apply published rhythm measures to a
large corpus of data to test whether rhythm measures can
reliably separate languages. To avoid inconsistencies
introduced by human segmentation, we use a simple automatic
segmentation into consonant-like and vowel-like regions. Such
segmentation  offers  consistent  language-independent
treatment of the acoustic signal. It also permits application of
rhythm measures to a larger corpus of data than previously
used in these studies.

2. Data and methodology

Our corpus consisted of 1843 short texts recorded from 41
speakers of Southern British English (E), Standard Greek (G),
Standard Russian (R), Standard French (F) and Taiwanese
Mandarin (M). The texts included extracts from ‘“Harry
Potter” in the original or translation, fables and the fairytale
Cinderella.

Speakers were 20-28 years old; all had been born to
monolingual parents and had grown up in their respective
countries. At the time of the recording all speakers were living
in Oxford. Speakers had lived outside their home country for
less than 4 years. The recordings were made in the soundproof
room of the Oxford University Phonetics Laboratory, using a
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condenser microphone, and recorded direct to disc at a 16 kHz
sampling rate. The texts were presented on the screen in
standard orthography for each language. The speakers could
repeat any text if they were not satisfied with their reading.
Overall 15% of the recordings were repeated, though the
fraction was highly variable from speaker to speaker. The
recordings took place in two or three sessions on separate
days.

2.1. Automatic and manual segmentation

Numerous perceptual studies using a processed signal have
shown that both adults and infants can identify the language
without access to segmental information [for references see 5,
6]. Many of the published rhythm measures are calculated on
the basis of vocalic and intervocalic intervals. There is also an
increasing interest in segmentation based on acoustics and not
on phonological units. For example, Ramus [6] noted that
rhythm measures should ultimately be computed ‘in more
general terms, e. g. in terms of highs and lows in a universal
sonority curve’. Potential outcomes of such computation have
been demonstrated by [7].

For this paper we have segmented speech based on
loudness and irregularity. The process yields three types of
segments: silences, vowel-like segments with a nearly periodic
waveform (1), and segments where the waveform is not
periodic (2). Category (2) can include frication and/or regions
with rapid changes in the waveform. This is broadly consistent
with most published rhythm measures which are defined on
the basis of vocalic and intervocalic intervals.

Our algorithm' computes time series of specific loudness
and aperiodicity [8, 9]. These values are smoothed and then
compared against thresholds (see Figure 1) to generate
transitions from one discrete state to another. The
segmentation is controlled by 5 parameters: [a] a smoothing
time constant for the loudness and irregularity time series (the
smoothing process tends to suppress very short segments); [b]
the normalised® loudness of the silence-to-nonsilence
transition; [c] the normalised loudness of the nonsilence-to-
silence transition (i. e. the transitions have hysteriesis); [d and
e], irregularity thresholds for the 2—1 and 1—2 transitions
respectively.
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Figure 1: Transitions between the three states.

The parameters are set by an optimization procedure and
apply to the entire corpus. They are adjusted to minimize the
mean-squared difference between the number of regions
generated by the segmentation and the number predlcted from
the phoneme-level transcriptions of utterances’. Based on
expected transcription of the text, the number of occurrences
of state (2) is matched to the number of sequences of vowels

! Source code is available at ht(t)% //sourceforge net in the
“speechresearch” project under z2009aesopRM

> Normalisation involves subtracting an estlmated noise floor,
and then scaling so that the average Toudness is unity.

3 We used [10] to transcribe French texts.
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and sonorants; state (1) to the remaining phonemes; and
silences are weakly constrained to appear about 10% as often
as the other regions. The resulting parameters for our corpus
are: 0. 022 (seconds), 0. 622, 0. 0001, 0. 382, and 0. 479,
respectively.

A comparison of the results against segmentation by three
professional phoneticians showed that state (2) corresponded
to vowels and sonorants, state (1) corresponded to obstruents
and the silence corresponded to pauses.

While pauses consistently matched silences in all
languages, there were differences in the distribution of
consonants between (1) and (2). Most notably, automatic
segmentation reflected differences in the realization of stop
consonants: in Mandarin /t/ was often lenited with sustained
voicing and thus classified as state (2). There was also a
noticeable difference in the segmentation of voiced plosives in
French and English, reflecting the difference in acoustic
correlates of phonological voicing in these two languages.

Some acoustic classifications of segments differed from
standard phonetic classification. For example, English [h] was
consistently classified as ‘vowel-like’ (state 2) or part of
silence. This agrees with the view that in English and possibly
in other languages [h] is acoustically closer to approximants
than to other fricatives [11: 326]. Similarly, devoiced vowels
and sonorants in phrase-final position were consistently
classified as ‘consonants’.

Comparison  between expected transcription and
segmentation showed that on average vocalic segments
correspond to 1. 4 syllables. This number was higher for
Russian and Greek (1. 57 and 1. 62 respectively) and lower for
Mandarin and English (1. 27 and 1. 30). One vocalic region
generally corresponds to one syllable, but adjacent syllables
are frequently fused together, e. g. if vowels were separated by
sonorants.

2.2. Rhythm measures

Based on the segmentation described above, we computed for
each text the rhythm measures listed in Table 1. Although we
follow the literature in using V and C in our labels, these
really refer to states (2) and (1) respectively.

Previous studies of RMs differed in their treatment of
pauses and pre-pausal syllables. To estimate the effect of such
differences, we computed three alternatives for each measure.
First, we calculated the scores for each interpause stretch (IPS)
then averaged over all the IPSs within a text (The average was
weighted by the duration of each IPS). Second, we applied the
same algorithm but omitted the final consonantal and vocalic
intervals of each IPS. Third, scores were computed across the
whole text including intervals spanning a pause.

2.3. Classifier

To compare intra-group variation in RMs to inter-group
variation, we apply classifier techniques as used in [8]. The
classifier* is an algorithm that will optimally predict which
language was most likely to have produced the observed RMs.
We measure how often it can correctly predict the language,
based on one or more RMs. Assuming that the RMs capture
the rhythmic differences between the languages, success or
failure of a classification corresponds roughly to whether a
listener could identify the languages based on rhythm after
listening to a single paragraph.

We used a classifier that assumes that the log likelihood
ratio between the probabilities of any languages is a linear
function of the rhythm measures fed into the classifier. Each
language then forms a convex polygonal region in the space of
the observed RMs. Classifiers were built with 16 different
non-overlapping combinations of training and test sets. We
report averages.

We used z-tests to test the significance of difference
between success rate and chance for each classifier and also
differences between classifiers.

! Source code is available at http://sourceforge, net in the
“speechresearch” project under “g_classifiers-0.728. 0

1532

Table 1. Rhythm measures used in this study

RM Description
%V Percentage of vocalic intervals [6]
AV Std. deviation of vocalic intervals [6]
AC Std. deviation of consonantal
intervals [6]
VI Variability  index of  syllable
durations [12]
CrPVI Raw pairwise variability index (PVI)
ofconsonantal intervals [13]
VnPVI Normalised PVI of vocalic intervals
[13]
CnPVI Normalised consonantal PVI [13]
Vdur/Cdur | Ratio of vowel duration to consonant
duration [14]
PVI-CV PVI of consonant+vowel groups [1]
med_CrPVI | median CrPVI [15]
med_VnPVI | median VnPVI [15]
YARD Variability of syllable durations [16]
nCVPVI Normalised PVI of consonant+vowel
groups [17]
VarcoAC AV/mean vocalic duration [18]
VarcoAV AC/mean consonantal duration [18]

3. Results

3.1. Classifiers based on single measures

We tested all 45 variants of the 15 RMs described above,
building a classifier for each variant (i. e. attempting to predict
the language from one measurement of a single RM). The
classifier was making a 5-way choice for each paragraph.

The 3 alternative ways of handling pauses had little effect
on separating languages overall. Classifiers based on RMs
computed without pre-pausal intervals performed slightly
better than those based on RMs computed using the other two
algorithms. However these small differences did not affect the
overall ranking of measures.

The success rates for each measure appear in Table 2. The
values are for the variant computed across inter-pause
stretches without final syllable (chance performance=30%).
The success rate of classifiers based on many single measures
was only slightly above the chance level. Measures based on
vocalic intervals were generally more successful in separating
languages than measures based on the variability of
consonantal regions. Differences between the classifiers that
are larger than 3% are significant at P<0. O1.

Table 2. Results for classifiers based on one rhythm measure.

RM PCorrect | RM % Correct
PVI-CV 31% VI 37%
VarcoAC 33% VarcoAV 37%

AV 34% nCVPVI 38%
YARD 34% Vdur/Cdur 39%

AC 34% %V 40%
CrPVI 35% med_VnPVI | 41%
CnPVI 35% VnPVI 43%
med_CrPVI 36%

Classifiers based on single measures could not distinguish
between languages traditionally assigned to different rhythm
classes (e. g. English and French) any better than between



languages from the same rhythm class (e. g. English and
Russian). However these classifiers did relatively well at
distinguishing Mandarin from other languages.

We also built and tested classifiers on pairs of languages
(45 one-dimensional classifiers for each of 10 pairs of
languages). This showed that some measures are better than
others in separating specific pairs of languages. VnPVI
consistently separated Mandarin from other languages.
However, CnPVI and CrPVI were more successful in
separating French and Greek or French and Russian, while
Greek and Russian were best separated by YARD.

3.2. Classifiers based on two or three measures

We then built classifiers that made a five-way language
prediction based on pairs of RMs. We tested all 120 pairs of
RMs with three pause-handling alternatives for each pair, a
total of 360 two-dimensional classifiers. While pairs of RMs
were more effective than singletons, no pair correctly
classified more than half of the data. The most efficient
combinations were %V-medVnPVI (49%) and %V-VnPVI
(48%), medCrPVi-medVnPVI (48%) Vdur/Cdur-VnPVI
(48%), and CrPVI-VnPVI (47%). The combination of %V and
AC correctly classified 44%, while VarcoAV-VarcoAC
achieved 40%. Differences between the classifiers that are
larger than 3% are significant at P<0.01.

Table 3. % of correctly classified data, by language’.

RM E F R G M
%V-med_VnPVi 72 0 33 19 69

Vdur/Cdur — 73 0 34 15 70

VnPVI

CrPVI-VnPVI 70 2 2 50 70

%V-AC 75 16 34 25 64

Although the most efficient pairs of measures achieved a
similar success rate, they differed in how well they identified
specific languages. Table 3 shows the percentage of correct
identification achieved by these pairs for each language®.

We also ran 6 three-dimensional classifiers which
combined the most successful pairs of measures and
singletons. The success rate of the most efficient of these
classifiers did not exceed the success rate of the most efficient
two-dimensional classifiers.

3.3. Multidimensional classifiers

As the next step we explored higher-dimensional classifiers
based on more than three RMs. We built three 15-dimensional
classifiers (one for each of the pause-handling alternatives)
and one 45-dimensional classifier, using all the measures. The
overall success rate of these classifiers was not significantly
better than the success rate of the most efficient two-
dimensional classifiers (50% for 15-dimensional classifers and
52% for 45-dimensional classifier).

At the same time, the classifier based on all measures
showed less differences than pairs of measures in percentages
of correctly identified texts for each language (E: 60%, F:
26%, R: 37%, G: 47% and M: 71%).

Figure 2 shows the confusion matrix for this classifier.
The grey scale corresponds to percentage of data from
language X (horizontal axis) classified as Y (vertical axis).
Higher percentage is shown in greater brightness. The squares
on the diagonal are correct classifications. Bright areas off the
diagonal indicate classification mistakes.

> E=English, F=French, R=Russian, G=Greek, M=Mandarin.

¢ Performance for English was high because English was the
largest fraction of the fraining set.
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Figure 2: Confusion matrix for 45-dimensional classifier.

3.4. Speech rate

Speech rate may be an important factor that affects rhythm
measures [cf. 4]. However, a classifier based on the average
duration of underlying syllables was not significantly better
than chance, which proves that differences in average speech
rate do not account for perceived differences between
languages.

To gain a better understanding of the effect of speech rate,
we then built 45 two-dimensional classifiers based on speech
rate combined with one or another RM. The most efficient
combinations are presented in Table 4. As in Table 2, the
reported values are computed for inter-pause stretches without
final syllables. The numbers in parentheses indicate the
success rate for the measure without including the speech rate
information. Significant differences are marked with an
asterisk’.

Table 4. Results for classifiers based on speech rate

RM Pcorrect
CrPVI 44% (35%) *
med_VnPVI 47% (41%)
Vdur/Cdur 48% (39%) *
7Y% 48% (40%) *
VnPVI 48% (43%)

The RMs that were most efficient in combination with
speech rate were also the ones which were most efficient on
their own. Adding speech rate led to a substantial increase in
the success rate of measures that are not normalised by speech
rate. Therefore, even though speech rate cannot separate
languages on its own, it is definitely one of the variables in the
‘thythm equation’ and needs to be included in any model of
rhythm.

4. Discussion

Rhythm measures based on automatic segmentation reveal
differences between languages. At the same time, there exists
substantial variation within languages which makes it
impossible to reliably separate languages based on the rhythm
of a single paragraph. These results agree with studies on
human language identification. It has been repeatedly shown
that when presented with a processed signal lacking segmental
information, listeners often cannot correctly identify the
language. The exact success rate depends on the experimental
setup and languages: in studies based on low-pass filtering of
the signal, the success rate for distinguishing between two
languages is around 65%, with chance level at 50% [for

" The difference needs to be %reater than 8% to be significant.
The threshold is determined by how much the classifier
performance varies from one choice of training set to another.



references see 5]. The success rate of our multidimensional
classifier (53%, vs. a chance level of 30%) is at least
comparable.

We also found that some measures are better than others
in separating specific languages. This agrees with an
observation by [13] who noted a complementarity between
%V and VnPVI across different languages. Thus the
efficiency of the measure depends on the languages in the
corpus. Therefore studies based on different combinations of
languages may come to different conclusions and this has to
be taken into account when comparing their findings.

Our results provide evidence that rhythm appears to be a
a two- or three-dimensional phenomenon®. While there seems
to be an improvement in performance as we go from two-
dimensional to high-dimensional classifiers, the increment in
performance from each dimension beyond the first two clearly
must be small. The strength of this argument is limited by the
set of published RMs. The possibility remains that rhythm
requires more than two dimensions, but that existing RMs are
strongly correlated with each other and that the set we tested is
only capturing two dimensions of rhythm.

Finally, we have demonstrated the advantages of
automatic segmentation, which consistently segments speech
based on acoustic parameters. We have shown that acoustic
properties of segments do not always match their expected
phonological or even phonetic category. These differences are
language-specific and provide experimental evidence that
acoustic differences between phonological categories may
vary across languages. In turn this suggests that rhythm
measures based on manual labelling are sensitive to potential
differences in the phonological interpretation of sounds of a
given language. For example, [13] note, that contrary to
prediction, their intervocalic rPVI values are similar for
Japanese, German and English, because they included
devoiced vowels in the intervocalic regions.

While it could be argued that perception of native
language may be affected by the knowledge of phonological
oppositions, this is certainly not true for unknown languages
or pre-lexical infants. Therefore segmentation based on clearly
defined acoustic parameters offers a better approximation of
how rhythm is perceived in situations where segmental
information is not available.
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