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Abstract
Some phoneme boundaries correspond to abrupt changes in the 
acoustic signal. Others are less clear-cut because the transition 
from one phoneme to the next is gradual.

This paper compares the phoneme boundaries identified by 
a large number of different alignment systems, using different 
signal  representations  and Hidden Markov Model structures. 
The  variability  of  the  different  boundaries  is  analysed 
statistically, with the boundaries grouped in terms of the broad 
phonetic classes of the respective phonemes.

The mutual consistency between the boundaries from the 
various  systems  is  analysed  to  identify  which  classes  of 
phoneme boundary can be identified reliably by an automatic 
labelling system, and which are ill-defined and ambiguous.

The  results  presented  here  provide  a  starting  point  for 
future  development  of  techniques  for  objective  comparisons 
between systems without giving undue weight to variations in 
those  phoneme boundaries  which  are  inherently  ambiguous. 
Such techniques should improve the efficiency with which new 
alignment and HMM training algorithms can be developed.

1. Introduction
Almost all current acoustic-phonetic speech technology (speech 
recognition, understanding, alignment and synthesis systems) is 
based on the concept of speech as a sequence of discrete speech 
units  (phonemes).  However  in  practice  most  realisations  of 
these units are far from discrete – they blend into one another, 
so that  any sharply defined boundaries are arbitrary to some 
degree.

In the development of a new speech system, one of the first 
steps generally involves analysing a large database to identify 
the locations of individual phonemes or phoneme groups. The 
database being analysed is often prohibitively large for manual 
labelling, so an automatic system is required, but the design of 
such an automatic system is problematic because it is not clear 
how to assess its performance.

The most common method of assessing labelling accuracy 
is  to  compare  the  automatic  system's  labels  with  a  'gold-
standard' set defined by one or more phoneticians [1, 2],  but 
this is inherently subjective and requires much manual effort. 
To  avoid  these  difficulties,  we have  developed an  objective 
measure of the quality of the alignment system, that  operates 
without  reference  to  human  interpretations.  This  measure 
responds to inconsistencies (where the time difference between 
the  different  systems'  labels  is  unpredictable),  and  it  is  not 
affected by consistent differences between systems (where one 
system places a particular label earlier or later than another).

Both manual and automatic segmentation accuracy varies 
as a function of the  phonemes on either side of the boundary 
[3];  some  boundaries  are  accurately  predictable  from  one 
system to another, while others vary greatly and are essentially 
unpredictable.  We  focus  on  the  phoneme-dependency  of 
accuracy, measured by system-to-system predictability.

The approach described here bears some similarity to that 
of Kominek and Black [4], but we do not average the results of 
alignment  systems  to  obtain  a  definitive  set  of  labels  –  we 
compares every individual alignment system's result with every 
other one and assesses how precisely the labels can be located 
– not  where they should be. It  allows for the fact that  some 
alignment  systems  may  tend  to  label  a  particular  type  of 
transition  early  or  late  relative  to  another.  Such  consistent 
discrepancies  do  not  indicate  a  significant  difference  in 
precision between alignment systems, and so do not affect the 
results of this analysis.

2. Method
Our  approach  is  to  use  a  cohort  of  results  from automatic 
systems  to  estimate  the  variability  of  individual  labels.  By 

building  many  different  phonetic  alignment  systems  with 
diverse  characteristics  and  comparing  the  individual  labels 
between  these  systems,  it  is  possible  to  determine  which 
boundaries are ambiguous and which can be defined accurately, 
without reference to human labels.

2.1. Phoneme Groups

There are very many possible phoneme-to-phoneme boundaries 
(typically  2000  or  more,  depending  on  the  details  of  the 
phonetic inventory). This is too many for simple interpretation 
of any analysis based on individual phoneme identities.

Furthermore, many of these phoneme-pairs are very rare in 
natural  speech,  and  any  statistics  derived  from  such  small 
numbers  of  examples  would  be  unreliable.  To  avoid  these 
problems,  phonemes  can  be  grouped  into  broad  phonetic 
classes before calculating any statistics (see Table 1, which also 
shows the abbreviations for each class, as used in the rest of the 
paper).

Table 1. Broad phonetic classes (SAMPA [5]).

Class Abbr. Phones (SAMPA)
Nasal Nas m, n, N

Plosive Plo b, d, g, k, p, t
Affricate Aff dZ, tS
Fricative Frc D, S, T, Z, f, h, s, v, z
Vowel Vow @, A, E, I, O, U, V, {, 3, i, u, Q

Approximant App r, j, l, w
Diphthong Dip I@, U@, aI, aU, E@, eI, OI, @U

Silence Sil  silence, short inter-word pause

2.2. Training Data

The  training  data  for  all  systems  was  an  ad-hoc corpus 
originally assembled for other purposes. The subjects were all 
speakers of Standard British English, and the utterances were a 
mixture  of  single  words,  phrases  and complete sentences of 
varying  lengths.  The  recordings  were  made  with  different 
equipment and at different sampling rates, digitally re-sampled 
to  16 kHz. The database consists  of over 23,000  utterances, 
making a total of 48,000 spoken words taken from a vocabulary 
of 16,000.

The phoneme strings to be aligned with the speech were 
based  on  a  lexicon  compiled  from  several  sources,  with 
manually edited transcriptions for any words in the database 
that were not in any of the lexica. For sentences and phrases, an 
optional  'short-pause'  label  was  inserted between words.  No 
post-lexical  rules  were  applied, so  some  of  the  phonetic 
transcriptions may have been unrealistic.

2.3. Alignment Systems

All  the  alignment  systems  were based  on Gaussian  mixture 
Continuous-Density  Hidden  Markov  Models  (CD-HMMs), 
built with the HTK toolkit  [6]. They were based on the same 
lexicon and were trained on the same data and with the same 
procedures  and  training parameters.  The  details  which were 
changed between systems are as follows:

2.3.1. Signal Analysis

To ensure sufficient diversity in the alignments produced by the 
different  systems,  three different  preprocessors  were used to 
produce observation vectors:
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1. Mel-Frequency Cepstral  Coefficients  (MFCCs)  [7] with  a 
20 ms  time window for  each frame, and one frame every 
10 ms.

2. Linear  Prediction  Cepstra  (LP-Cepstra)  [8] with  a  24 ms 
time window, one frame every 8 ms.

3. Auditory Description Vectors (ADVs) [9], with a frame rate 
of one every 10 ms.

2.3.2. HMM Structure

The numbers of states and of Gaussian mixtures per state, were 
the same for all phoneme models within each system, but were 
varied between systems to produce different alignment results.

The number of states per phoneme were varied from 2 to 5. 
For 2 and 3 state models, a strict left-right topology was used 
with no skips.  For 4  and 5  state  models, 1-state  skips  were 
allowed  so  that  shorter  phonemes  could  still  be  modelled 
without  extending the states  of one model into neighbouring 
phonemes.

The  number  of  Gaussian  mixtures  per  state  was  set  to 
either 1, 2, 4, or 8 for all phoneme models in each system.

Thus for each of the 3 pre-processors, there are 4 choices of 
states per model, and 4 choices of mixtures per state, making a 
total of 3 × 4 × 4 = 48 alignment systems.

2.3.3. Training Procedure

The  training  process  used  embedded  re-estimation  via  the 
Baum-Welch algorithm [10], applied in three phases:
• Training  from  flat-start  HMMs,  initialised  to  the  global 

means  of  all  the  training  data,  to  produce single-mixture 
phoneme, silence, and short-pause models.

• Disambiguation  of  alternative  pronunciations  (including 
presence or absence of inter-word pauses)  followed by re-
training of the models.

• Disambiguation as before, and an increase in the number of 
mixtures  in  appropriate  states  (using  a  randomised 
duplication of each existing mixture), followed by final re-
training of the full models.

Baum-Welch training was iterated four times at each stage.

2.4. Comparisons

The  phonetic  labels  for  each  system  were  generated  by 
conventional Viterbi alignment of the phonetic HMMs with the 
respective speech observation vectors.  Each label  from each 
alignment system was then compared with the equivalent label 
from each of the other systems. For each system-pair, the time 
offset  between the labels was calculated. For the broad-class 
phoneme experiments,  these  were  grouped  according  to  the 
broad class of the phonemes involved. For brevity these groups 
will  be  referred  to  as  “class-transitions” because  they 
correspond to the transition from one broad phonetic class to 
another. The transitions in the other, ungrouped, experiments 
will be referred to as “phoneme-transitions”.

For  each combination of  class  /  phoneme-transition  and 
system-pair,  histograms  were  constructed  to  show  how 
frequently each time discrepancy was observed. The histogram 
bins were set to 10 ms width (the worst-case time resolution 
obtainable  with  the  front  ends  used  here).  Some  typical 
histograms are shown in Figures 1to 3.

Figure  1  shows  the  class-transition  distribution  for  a 
system-pair;  One system labels  the  transitions  32 ms  earlier 
than the other, but the variance is small, so the pair of systems 
are mutually consistent. Figure 2 shows the distribution for a 
transition which is labelled inconsistently by the two systems, 
so the histogram is too broad. Finally, Figure 3 is a multi-modal 
distribution which, again, does not constitute a valid agreement 
between the systems.

In order to decide which class-transitions are reliable and 
which are  not,  the  respective histogram is  examined,  and if 
more than 75% of the discrepancies fall in two adjacent bins, 
the two alignment systems are deemed to agree. This is quite a 
strict  criterion  –  the  systems  must  agree  to  within  their 
characteristic  time  resolution  on  the  vast  majority  of  each 
transition.

Two bins are used in the calculation since the peak of the 
underlying continuous distribution might lie close to the edge of 
a bin, in which case the magnitude of the true peak would be 
divided between the two bins.

This histogram-based approach is used because it makes no 
strong assumptions about the distribution of values (which does 
not need to be Gaussian, continuous, or uni-modal), and even if 
one system of each pair consistently places its labels earlier or 
later  than  the other,  they are  not  penalised.  As  long as  the 
discrepancies  are  consistent,  they will  still  be  identified  as 
agreeing with each other.

Finally, the overall consistency with which any given class-
transition  is  identified  is  quantified  by  counting  how many 
system-pairs agree. In these experiments there are 48 different 
systems so there are (48  × 47) / 2 = 1128 possible pairs. The 
more pairs agree, the more reliable the labelling of that class-
transition.

Figure 1: Normalised time discrepancy histogram for 
Sil → Nas transitions, comparing a system using ADVs 
for acoustic features with 2 states and 1 mixture versus 

one using LP Cepstra, with 3 states and 4 mixtures.

Figure 2: Normalised time discrepancy histogram for 
App → Sil transitions, comparing ADVs, 2 states, 
1 mixture versus LP Cepstra, 3 states, 8 mixtures

Figure 3: Normalised time discrepancy histogram for 
Dip → Sil transitions, comparing ADVs, 2 states, 
1 mixture versus LP Cepstra, 2 states, 1 mixture

3. Results
The  broad-class  results  are  shown  in  Table 2,  with  the 
background  colour  denoting  the  magnitude  (to  make  the 
structure in the figures  more clear).  The darker the cell, the 
more  reliable  the  class-transition.   There  are  some  values 
missing  from  Table  2.  There  were  no  occurrences  of  an 
affricate-to-affricate  transition  in  the  data  used  for  these 
experiments, and there were insufficient examples of affricate-
to-nasal transitions to calculate meaningful statistics. Of course 
a silence-to-silence transition is nonsensical!
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The corresponding table for the ungrouped phoneme-
transitions would be impractical to present here, but they have 
been compared to the grouped results  and some of the more 
interesting observations are summarised below.

3.1.1. Utterance-Initial Transitions

On  average,  72%  of  the  system-pairs  agree  on  silence-to-
phoneme transitions,  but  a  significant  number  of  silence-to-
phoneme transitions were identified identically by 99% or more 
of all system-pairs:

silence → /S/, /d/, /b/, /w/, /l/, /r/, /m/, /n/, or /O/

Conversely,  the  least  reliable  silence-to-phoneme 
transitions (agreed upon by 40% or less of system-pairs) are:

silence → /v/, /T/, /h/, /f/, or /tS/

3.1.2. Utterance-Final Transitions

On average, only 13% of the system-pairs agree on phoneme-
to-silence transitions,  and  only the  following  transitions  are 
consistently identified by more than 25% of system-pairs:

/s/ or /S/ → silence

The  following  utterance-final  transitions  are  the  ones 
identified least  accurately, with less than 5% of system pairs 
agreeing on their timings:

/k/ or /v/ → silence

3.1.3. Most Reliable Transitions

A number of phoneme-transitions are agreed upon by over 99% 
of the system-pairs. They are listed here:

/s/ → /@U/, /eI/, /aI/, /O/, /E/, /u/, /i/, /V/, or /p/
/t/ → /eI/, /u/, or /i/ 

/f/ → /A/
/z/ → /eI/

The  vast  majority  of  these  correspond  to  a  change  in 
excitation from either a fricative or unvoiced stop to a voiced 
phoneme (vowel or diphthong).

3.1.4. Most Unreliable Transitions

The following phoneme-transitions are only consistent between 
1% or less of the system-pairs:

/U@/, /O/, /E/, /@/, /u/, or /i/→ /l/
/aI/ or /aU/ → /@/

/j/ → /u/
/U@/ → /r/

/l/ → /eI/, or /w/

/s/ → /s/
/t/ → /t/

Most  of  these  involve  transitions  either  to  or  from 
diphthongs or approximants.

It should be borne in mind that the /s/ → /s/ and /t/ → /t/ 
transitions were most  likely inconsistent simply because they 
were  not  articulated  as  transcribed.  Most  speakers  will 
assimilate them into a single phoneme or insert a short pause 
between them, if trying to articulate clearly. This is a problem 
with the simple lexicon-based approach used both in this paper, 
and in most current speech recognition systems.

4. Discussion
An important feature of the analysis is that it allows systematic 
differences to be separated from unpredictable alignment errors. 
For instance, Figure 1 shows a pair of alignment systems that 
have a large systematic difference in where they put a phoneme 
boundary,  but  they disagree by  a  consistent  amount.   Such 
systematic  disagreements  can  be  as  large  as  (or  sometimes 
larger than) the unpredictable alignment errors.  This reflects 
the fact that phoneme boundaries are ill-defined and that each 
alignment system embodies its own, slightly different definition 
of phonemes.

Looking at  Table 2,  the most  reliable transitions  are the 
ones from silence to the other phonetic classes. In particular, the 
most reliable of all are silence-to-plosive and silence-to-nasal. 
Conversely, the least reliable are among vowels, approximants 
and diphthongs. The transitions into silence are also relatively 
unreliable  and  variable.  These  broad-class  conclusions  are 
supported by results for individual phonemes.

The range of agreement scores is remarkably large: some 
phoneme-transitions (e.g. silence → /n/) are consistent between 
99% of system-pairs, while some (e.g. /O/  → /l/) are almost 
never consistent.

Table 3  summarises  the ranges of reliability for different 
class-transitions.   In  terms  of  broad classes,  those involving 
transitions  between  affricates  and  vowels,  diphthongs,  or 
nasals,  seem to  be  more  robust  than  most.   As  would  be 
expected,  many  of  the  most  precisely  identifiable  class-
transitions  correspond  to  transitions  from  one  form  of 
excitation to another – voiced, fricative, affricate, stop, etc. – 
and most of the rest consist of abrupt changes to the vocal tract 
configuration – between nasals, vowels, and approximants, for 
example.

However,  it  also  appears  that  in  general,  diphthongs 
produce more  precisely identifiable  labels  than  vowels.  The 
most  precisely  identifiable  boundaries  of  all  are  silence-to-
plosive.

These  discrepancies  observed  between  system-pairs  are 
largely comparable with those between human segmenters, as 
documented by  [1][3].  The pattern of these human errors  is 
broadly  similar  to  the  those  reported  here,  but  with  some 
notable discrepancies.

An inverse relationship would be expected between mean 
human segmentation error and the agreement scores presented 
here.  This  is  supported  for  extreme  pairs;  for  instance  the 
classes  with  the  three  largest  human  errors  (Nas→Nas, 
Vow→Vow, and Vow→App) have very low agreement scores 
in our work, and two classes with the smallest human errors 
(Frc→Plo and Plo→Vow) are among our best-agreeing pairs. 
However, other pairs disagree.

Table 2 Number of agreeing system-pairs for each class-transition

Transitions
Class A → Class B

Class B

Plo Aff Frc Nas App Vow Dip Sil

Class A

Plo 19 39 70 84 166 411 469 57

Aff 369 – 25 – 63 688 753 123

Frc 438 86 22 456 133 423 537 116

Nas 241 632 247 5 52 332 396 84

App 208 156 251 60 5 26 9 103

Vow 332 365 254 182 8 1 1 78

Dip 361 437 260 170 6 0 4 77

Sil 923 395 299 817 713 513 516 –



Table 3. Subjective transition groupings

Agreeing Pairs Class-Transitions
299 – 923 Silence → All
600 – 800 Aff → Dip, Vow

Nas → Aff
400 – 600 Frc → Plo, Nas, Dip, Vow

Plo → Dip, Vow
Dip → Aff

300 – 400 Aff, Vow, Dip → Plo
Nas → Vow, Dip
Vow → Aff

200 – 300 App, Nas → Plo
App, Nas, Dip, Vow→ Frc

100 – 200 App → Aff
Frc, Plo → App
Dip, Vow → Nas

0 – 100 App, Dip, Vow → App, Dip, Vow
App, Nas → App, Nas
Plo → Plo, Nas
Plo, Aff, Frc → Aff, Frc
Aff → App

53 – 123 All → Silence

Some  of  these  differences  may  be  attributed  to  the 
shortcomings of the lexicon-based approach used in this paper, 
but this is an area which is the subject of further investigation.

5. Conclusions
While all phoneme boundaries are essentially artificial and, to a 
greater or lesser extent,  arbitrary,  some are more ambiguous 
than others. Consequently different boundaries should be given 
different weights when assessing the accuracy of any alignment 
or segmentation.

The  results  presented  here  have  been  derived  without 
reference to any human alignments, but they broadly confirm 
independently  assessed  human  labelling  variations.   It  is 
possible that the more consistent boundaries are also easier for 
humans to decode, which might make them unusually important 
for human speech and language.

They  indicate  that  the  boundaries  between  vowels, 
diphthongs and approximants are highly ambiguous, and so do 
not provide an effective way of comparing alignment systems. 
Word endings (transitions from any phoneme to silence) are 
also relatively unreliable, and of little use in assessing accuracy.

On the other  hand,  word onsets  (i.e.  silence-to-phoneme 
transitions)  are  clearly  identifiable  almost  regardless  of  the 
phoneme at the start of the word, and so are critical in assessing 
accuracy.  Other  reliable  transitions  include  affricates-to-
vowels  /  diphthongs,  and  nasals-to-affricates.  The  most 
precisely identifiable  class-transition  of  all  is  the  silence-to-
plosive.

Ultimately these observations  should not  only affect  the 
methods used to optimise alignment systems; they should also 
be taken into account when designing speech databases for the 
training of speech recognition and synthesis systems.
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