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Abstract

Despite the apparent simplicity, measuring the position of peaks in

speech fundamental frequency (f0) can produce unexpected results in

a model where f0 is the superposition of an supersegmental component

and a segmental component. In these models, the measured f0 peak

position can be as much as an entire syllable different from the peak

of the intonation component. This difference can be large enough so

that the measured peak positions could falsely suggest a phonological

distinction in the intonation where none really exists. This paper then

discusses measurement techniques that are less sensitive to segmental

effects than directly measuring the position of the f0 maximum. A

algorithm, called the “bracketed maximum” is presented. The perfor-

mance of these techniques is compared on a corpus of speech data where

the intonation is expected to be in a stable position. The bracketed

maximum can reduce the variance of peak position measurements by

at least 15%, in the presence of changing segmental structure, thereby

presumably yielding a more accurate measurement of the intonation

peak position.

PACS numbers: 43.60.-c, 43.70.Jt, 43.72.Ar
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I. INTRODUCTION

Many papers on intonation are based upon measurements of the timing of peaks in

fundamental frequency (f0) contours (e.g. Chen et al. (2004), House (2003), Ladd et al.

(1999), Arvaniti et al. (1998), Silverman and Pierrehumbert (1990), and Pierrehumbert

and Steele (1989)). Peak timing is an easy, objective measurement, but f0 is generally

considered to be jointly determined by the segments of the utterance (“microprosodic

perturbations”) and suprasegmental prosodic properties. This paper investigates obtaining

timing of underlying prosodic peaks from measurements on f0 curves.

This paper has two objectives: first, to show that separating segmental and supraseg-

mental effects is not straightforward, even in a simple “toy” model: there are unexpectedly

large nonlinear interactions. Second, to compare several different ways of measuring the

peak timing to find which is best at estimating the timing of the prosodic peaks.1 We look

for the measurement technique that is least affected by changes in the segmental structure

of a sentence.

This paper assumes a superposition model for intonation. Superposition models assume

that an observable is made of a sum of two components and that the the two components are

independent of each other. One can always split an observed time-series into two or more

components; in fact, there are an infinite number of ways to do so. However, a superposition

model requires more than just the addition of two components; it also asserts that the two

components are independent and that they can be combined in any desired way.2 This

provides some constraint on how f0 can be split into two components.

Another constraint comes about because intentional control of f0 is not fast enough to

reproduce or compensate for segmental effects. The muscles of the larynx cannot produce

an increase of f0 in less than 100 ms (Stevens, 1998 pp. 40–48 and references therein, Xu

and Sun, 2000), while segmental effects can come and go in that interval. This means that,

to some level of approximation, we can split the segmental effects away from the prosodic

part by their characteristic time scale: short-term effects can be treated as aerodynamic or
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segmental effects and changes over time-scales longer than 100-200 ms are plausibly prosodic.

Such a division is consistent with the linguistic association of prosody with suprasegmental

properties (i.e. properties spanning more than one segment).

For f0, the first component in a superposition model is the prosodic contour, which is

normally assumed to be determined by the choice of accents and their positions. The second

component is the segmental effect: a change in f0 that depends on the phone. Low vowels

characteristically have a low f0, whereas high vowels have a somewhat higher f0 on average

(Crandall, 1925; Taylor, 1933; Peterson and Barney, 1952; House and Fairbanks, 1953;

Ladefoged, 1964; Whalen and Levitt, 1995). This vowel-dependent shift in f0 is variously

estimated to be from 4 Hz to above 10 Hz, i.e. roughly 0.5 semitones. While this shift

is fairly small compared to the (roughly) 3 semitone standard deviation of f0 in normal

speech (Baken, 1987, Table 5-2), it will be seen that it is not small enough to safely ignore.

Consonants can also affect f0. For instance, nasality has been observed to have a

significant effect (Silverman, 1987). Also, van Santen and Hirschberg (1994) showed that

voiceless consonants and voiced obstruents can make short-lived changes of about 20 Hz

near the onset of voicing. Thus the size of these consonant effects is comparable to those

caused by vowel height.

One example of a superposition intonation model is Fujisaki (1983), who constructed f0

contours from a superposition of short-term and long-term prosodic effects. Other models

of intonation that add segmental effects onto a prosodic component are Morlec et al. (1996),

Di Cristo and Hirst (1986), van Santen and Hirschberg (1994)3, van Santen and Möbius

(1999) and Ross and Ostendorf (1999).

A superposition model for intonation can be written as

f(t) = p(t) + s(t), (1)

where f(t) is the observed (surface) frequency at time t, s(t) is the segment-related frequency

shift, and p(t) is the prosodic (accent-related) part. Superposition implies that for any p(t)

which is a possible prosodic contour, and for any s(t) which is a possible segmental frequency
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shift, then p(t) + s(t) is a valid, physically possible intonation contour.4

The independence assumption in superposition models is probably just an approxima-

tion. But, if it were not a useful approximation, one would expect to see a substantially

different choice of segments in regions of low f0 vs. high f0, or alternatively, substantially

different phonetic implementation of segments in low f0 regions from high f0 regions. While

there are differences in segmental content of accented vs. non-accented regions (e.g. schwa

is rare under accented regions or see Greenberg et al., 2001), the correlation with f0 is

presumably not strong, because high f0 is not strongly correlated with accent/prominence

(Kochanski et al., 2005; Kochanski and Orphanidou, 2008).

Also, the fact that segmental effects have been measured suggests that they are not

compensated by speakers: if speakers automatically compensated for s(t), then one would

not expect an observable frequency shift when changing from a high vowel to a low vowel.

This is consistent with the assumption that p(t) is not used to compensate for s(t) – i.e.

that they are independent.5

II. A TOY SUPERPOSITION MODEL

I will illustrate the behaviour of the model with simple idealized forms for s(t) and p(t).

This section explores the mathematical consequences of superposition models of intonation,

and is not proposing particular forms or numerical values for any particular sentence.6

In this example, the equation for s(t) is chosen to represent an alternating sequence of

phones that have intrinsic frequency shifts that differ by 8 Hz in successive syllables. The

segmental part is thus taken to be

s(t) = 4 · sin(2πt/d) (2)

(in Hertz), where d = 0.5 seconds is the period after which the segmental structure repeats;

successive syllables can be imagined to occur every d/2 = 0.25 seconds.

The intonation part is

p(t) = 170 + 29 · cos(2π(t− τ)/D), (3)
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which is a wave with period D = 1.3 seconds (i.e. about 5 syllables). Low and high intonation

targets are separated here by two or three syllables. In this example, the average f0 = 170 Hz

is chosen to be midway between typical male and female values. The accents cause plus or

minus 29 Hz pitch excursions (roughly 3 semitones) relative to the average. Figure 1 shows

the underlying intonation contour p(t), as a dashed curve and the surface f0 contour, f(t).

The segmental shifts are small compared to the assumed intonation.

The time at which the first peak in p(t) occurs is given by τ in Equation 3. Figure 2

displays a set of different p(t) curves, each shifted slightly. These shifts correspond to changes

in the alignment of the intonation peaks relative to the segmental structure of the sentence.

Figure 2 shows the intonation contours generated by the model. They differ only in the

value of τ , which increases from τ = −50 milliseconds in steps of 30 milliseconds. This set

of curves corresponds to changes in the alignment of the intonation component p(t) relative

to the fixed segmental structure s(t). These curves are simply shifted versions of the dashed

curve in Figure 1.

This example uses frequency shifts caused by vowels, however, consonants can also

contribute substantial shifts to s(t). If there were only shifts on vowels, then peaks or

valleys of s(t) would be aligned with the syllable centers. But, if one includes segmentally

specified f0 shifts from consonants, peaks and valleys of s(t) can also occur between syllables

or at the edges of syllables. In this toy example, I plot curves in terms of a shift in p(t), but

equivalent results could be obtained by holding p(t) constant and changing the pattern of

segmental shifts. This is because the mathematics depends only on the alignment difference

between segmental and prosodic peaks.

Figure 3 shows the resulting f0 contours produced from the curves in Figure 2 by way

of Equations 2 and 1. As the intonation contour shifts with respect to the segments,

a sudden jump in the time of the maximum occurs between τ = 70 milliseconds and

τ = 100 milliseconds.

It is perhaps surprising that segmental effects which shift f0 up and down can lead to

substantial differences between the timing of the peak of the underlying prosodic contour
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FIG. 1. The underlying intonation contour p(t) (dashed) and the surface intonation f(t)

(solid line) for the model utterance. The plots shows fundamental frequency vs. time. The

difference between the contours is the segmental effect, s(t).
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FIG. 2. A set of contours for the intonation component, p(t). These form inputs to the

intonation model, Equation 1. The contours are shifted vertically for clarity. Contours are

labelled by τ (in seconds) and the maxima of neighboring curves differ by 30 ms.
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FIG. 3. A set of contours for f(t), derived from Figure 2 by adding segmental effects

(Equation 2). Small circles mark the maxima of the contours. Plotted as per Figure 2.
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and the surface f0 contour. Rather than being on top of peaks in the underlying prosodic

contour, peaks in f0 are pulled towards nearby segments that cause a positive shift in f0.

This can result in segmental anchoring: Imagine a group of utterances that have the

same segmental structure but progressively different underlying prosodic f0 contours. In

such a situation, an f0 peak can be “pinned” to a particular segment that has a positive

segmental effect. Even if the peak of p(t) shifts from utterance to utterance (within some

range), the peak of f0 might always occur within the same segment.

If there are two nearby segments with positive segmental effects with the underlying

peak of p(t) in between, the f0 peak can switch from being pinned on one to being pinned

on the other. This can lead to an effect where the f0 peak jumps a substantial interval

(e.g. the spacing between two syllables) as the result of an arbitrarily small change in the

alignment of the underlying prosodic contour. Such a jump could easily be misinterpreted

as evidence for distinct phonological states of prosodic alignment.

A. Explaining the Jump

One can understand the sudden jump by considering two limiting cases of the model.

First, suppose that the amplitude of s(t) is very small compared to p(t). Then, the time of

the observed f0 peak would smoothly follow the peak of p(t).

Now, consider the opposite case where p(t) is small compared to s(t). Then, segmental

shifts would dominate, and the overall maximum would always be very near one of the

maxima of s(t), but the underlying prosody would select which maximum would be the

highest. One of the maxima of s(t) would be pushed up by the (tiny but nonzero) p(t).

Therefore, if one were to vary τ , the maximum of f(t) would move only occasionally, when

it would jump from one maximum of s(t) to the next. (This case describes an extreme form

of segmental anchoring, where strong correlations arise between measured f0 maxima and

segment locations.)

For realistic values of s(t) and p(t), the model gives results intermediate between these
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FIG. 4. The relationship between the time shift τ of the underlying intonation contour

and the maximum of the observed fundamental frequency, argmax{f(t)}. The vertical axis

indicates the position of the maxima (open circles) in Figure 3. The diagonal dashed line

corresponds to the position of the underlying prosodic peak.
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two extreme cases. The maximum of f(t) is loosely anchored to the maximum of p(t), but

it changes non-uniformly as the underlying alignment changes.

Figure 4 plots the relationship between the maxima of f(t) and τ . (It is a more detailed

plot of the times of the maximum at the left edge of Figure 3, near t = 0.) It is s-shaped

and strongly nonlinear. There is a non-trivial relationship between the time of the observed

peaks in f(t) and the time-alignment of the accents, which is the underlying quantity of

interest to intonational phonologists.

The nonlinearity becomes more pronounced as the magnitude of s(t) increases or as

the magnitude of p(t) decreases. In fact, if the curvature (i.e. the second time derivative)

of s(t) were to exceed the curvature of p(t), Figure 4 would have a discontinuous jump

so that an infinitesimal change in τ would lead to a substantial jump in the time of the

observed f0 peak. These jumps occur when the top of the maximum is flat (or nearly so);

such flat-topped f0 contours are described in Knight (2002), Ogden et al. (2000, especially

pp. 194–195, Figure 8) and others. With a small pitch range in p(t) or flat-topped profile, a

small shift in alignment or segmental structure can even move the time of peak f0 from one

syllable to the next.

B. Segmental Anchoring

Segmental anchoring occurs when a peak in s(t) approximately coincides with a peak

in p(t). This should happen when high vowels or certain consonants are near accents that

raise f0. The mechanism is discussed in §II.A.

The anchoring effect can be important even in tightly controlled experiments that

generate several intonations for the same text. Dilley et al. (2005) test whether accents

are anchored to each other or to the segmental structure, and conclude that for their data,

the anchoring is segmental. Several other papers can be interpreted as showing anchoring

of f0 contours to the syllable (Arvaniti et al., 1998; van Santen and Hirschberg, 1994; Ladd

et al., 2000), possibly because of this effect.
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C. False Phonological Contrasts

The opposite of segmental anchoring occurs when a prosodic peak approximately

coincides with a segment that pushes f0 down. This is the situation shown in §II.

The resulting nonlinearity shown in Figure 4 is important because it could lead a

researcher to falsely assert a discrete (and thus presumably phonological) contrast when none

really exists. Suppose that the alignment of p(t) is somewhat variable and that the alignment

of the peak is taken from a single unimodal distribution with no phonological distinctions.

For example, take τ from a Gaussian distribution with a mean of 50 milliseconds and a

standard deviation of 40 milliseconds. One can think of this as a corpus containing many

utterances, each with a slightly different alignment.

To show the effect, the average peak alignment will be placed midway between maxima

of the segmental effect. Figure 5 shows that despite the unimodal distribution of alignments,

the distribution of observed f0 maxima is bimodal.7 This could easily lead to a false belief

that there are two underlying phonological categories (e.g. early peak vs. late peak), one for

each maximum.89 In reality, though, the bimodal distribution is generated by an interaction

between the intonation, the segmental shifts and the measurement procedure.

Thus, taking the maximum of an f0 contour and interpreting it as an intonation peak

is a dangerous procedure. Small segmental effects can lead to large changes in the position

of the maximum. The root cause of the trap is that the peaks of observed f0 that one can

measure are not the same as peaks in the prosodic contour, p(t), that one would like to

measure. An algorithm is therefore needed to estimate peaks in p(t) from observations of

f(t).

D. The Bracketed maximum Algorithm

It has been shown that the simple maximum10 of f(t) is not a satisfactory estimate of

the maximum of the underlying prosody. But how can one do better? Ideally, one would

model the segmental effects s(t) and simply subtract that function from f(t) to directly yield
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FIG. 5. The distribution of the times of f0 peaks including segmental shifts (dots). This

histogram assumes a Gaussian distribution of τ (the location of the underlying intonation

maxima) with a standard deviation of 40 milliseconds. (A shifted version of the distribution

of τ is shown by the thin dashed line.) The horizontal axis is the position of the maximum

and the vertical axis is the probability of observation, collected into 10 millisecond bins.

14



the desired p(t). However, this would not be trivial, as segmental shifts seem to vary from

speaker to speaker. Intonation experiments and data analysis would have to become rather

larger and more complex to estimate the segmental shifts of each phone for each speaker in

all relevant contexts.

A more practical approach is the “bracketed maximum”,11 which springs from two

ideas. First, if one thinks of the segmental effects as “noise”, one might be able to get

a better measurement of the prosodic peak position if we could take the average of two

measurements from locations where the segmental effects were approximately independent.12

This is possible by measuring in two different segments.

Normally, peaks in the prosodic component of f0 are expected to be wide enough to cover

more than one phoneme and their left and right edges will often be in different phonemes

with different, almost uncorrelated segmental effects. As long as the two measurements are

close enough to be on the same accent, it is plausible that the errors in the average position

may be smaller than the error in either individual measurement.

Second, making a timing measurement on the side of a peak is intrinsically less sensitive

to segmental effects than a measurement near the top of a peak. Suppose one is looking

for the top of a broad maximum. There might be a region perhaps 50-100 ms long over

which the frequency changes by only 4 Hz. Now, if segmental effects were different, so that

f0 changed by a few Hertz, then the observed maximum might move anywhere within that

large region, controlled by the pattern of segments.

On the other hand, if one makes timing measurements on the side of a peak, they will

be less affected by segmental effects because f0 is changing rapidly. To take a plausible

example, if p(t) swings through 40 Hz in 100 milliseconds, it will take only 10 ms to swing

through the 4 Hz range corresponding to segmental effects. So, if the segmental structure of

the sentence were rearranged without changing p(t), one would expect the time at which f0

crosses a given threshold to change by only 10 milliseconds or so. Changing the segmental

effects will thus have a smaller effect on the timing measurements if the measurements are

made on the sides of the peak.
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The bracketed maximum is a simple technique that implements these ideas and can

reduce the effect of segmentally determined frequency shifts. It involves measuring on both

sides of the maximum of f(t) and averaging the two measurements. It should work as long as

the segmental shifts are small compared to the prosodic f0 swings. (Edge cases are discussed

in Appendix B.)

The technique involves four steps

• Find the maximum of f0.

• Go backwards from the maximum as long as f0 is within ∆ Hz of the maximum,

or until an unvoiced region is encountered. Call this time tL. Here, ∆ is called the

measurement offset.

• Go forwards from the maximum, as long as f0 is within ∆ Hz of the maximum,13 or

until you encounter an unvoiced region. Call this time tR.

• Average tL and tR to produce an estimate of the time at which p(t) is maximal. This

is an estimate of the underlying intonation peak alignment.

Note that for ∆ = 0, the result is just the simple maximum. The algorithm may

be downloaded from http://kochanski.org/gpk/papers/2008/Segmental_Additive/

algorithm.py.txt and/or as part of this paper’s supplemental materials.

(Figure 6 shows sample data annotated to show the operation of the bracketed maximum

algorithm.)

In the toy model of §II, this algorithm yields a more accurate and more linear relationship

between the observations and τ , compared to the simple maximum. Figure 7 shows a

comparison between τ the result of the bracketed maximum algorithm and the result of the

simple maximum.

Another advantage of the bracketed maximum can be seen in Figure 8. This is computed

as per Figure 5, except that it shows the distribution of peak positions for both the bracketed

maximum and simple maximum algorithms. The bracketed maximum gives a unimodal
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FIG. 6. Sample audio data is plotted (lower curve) with a transcription, and an f0 contour

above that. The f0 contour is annotated with the simple maximum (labeled t0), intermediate

results from the bracketed maximum algorithm with ∆ = 20 Hz (labeled tL and tR), and

the final result (labeled t∆). This data was chosen to show the operation of the bracketed

maximum algorithm on a broad f0 peak.
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FIG. 7. The bracketed maximum (solid), the simple maximum (dashed) vs. τ , the maximum

of the underlying intonation contour.
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FIG. 8. The distribution of estimated intonation peak positions, (tL+tR)/2, for a simulated

experiment using the bracketed maximum technique (solid line w/dots). The resulting

histogram is unimodal, reflecting the unimodal distribution of τ (alignment). Results from

the simple maximum (from Figure 5) are reproduced as a dotted line for comparison, and

the underlying distribution of the prosodic peak position (τ) is shown as a dashed line.
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distribution and thus does not falsely suggest a phonological distinction between two

categories. The full-width at half-maximum is 107 milliseconds, close to the 94 millisecond

full-width at half-maximum for the distribution of τ .

The measurement offset (∆) that one uses is not particularly critical in this “toy”

model. Performance gradually improves as the measurement offset is increased, with a

broad optimum when it is half of the peak-to-peak swing of p(t) (e.g. 29 Hz in this example).

However, the bulk of the improvement comes by the time the measurement offset reaches

the peak-to-peak segmental effect, s(t) (e.g. 8 Hz).

E. Limits on the choice of ∆

One limit on using the bracketed maximum algorithm on real speech is that one does

not know the size of the relevant pitch excursions. Since the bracketed maximum will not

produce a useful value for f0 maxima that are smaller than the measurement offset, ∆ should

not be made too large.

However, very small f0 maxima are unlikely to be perceptually important or phono-

logically distinctive. When it is important for the speaker to communicate a distinction

between two possible meanings of a sentence, one expects that he or she will produce an

easily perceptible peak, large enough to be reliably detected by the listener. Under favorable

conditions, frequency differences as small as about 3 Hz may be detectable (Chuang and

Wang, 1978), but other experiments show that larger pitch motions are needed (Peng, 2000,

§10.3). Mack and Gold (1984) showed that the minimum detectable pitch shift is a function

of the complexity of the stimuli, ranging from 2 Hz for a buzz-tone though 4 Hz for monotone

sentences, to more than 6 Hz for sentences with near-natural intonation patterns.

Since the discrimination threshold is typically defined as a 75% correct detection of a

difference under quiet laboratory conditions without distractions, one expects that a yet

larger shift is necessary for reliable communication in realistic conditions.14

Linguistic evidence also points to somewhat larger values. For instance, Holm and
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Bailly (2002, §3.1) note that different repetitions of the same utterance typically differ by

1 semitone (about 10 Hz). Braun et al. (2006, §III.C) obtained similar results, suggesting

that phonologically distinct utterances are separated by about 3 semitones, while changes

smaller than about 1 semitone were unimportant.

Overall, these considerations suggest that any phonological differences that the speaker

wishes to be understood by the listener will probably be encoded by pitch shifts of 10 Hz

or larger. So, with ∆ near 10 Hz, the algorithm should produce reliable results for most f0

maxima that have any communicative function.

III. TESTS ON REAL SPEECH

A. Introduction

The argument so far rests on the basis of an idealized mathematical model (although

the parameters used in the model are consistent with observations). One of the predictions

of the model is that given a corpus of sentences with the same prosodic contour but different

segmental structures, segmental effects would make the timing of the observed f0 peak vary.

Thus, a measurement technique like the bracketed maximum should reduce the vari-

ability of peak timing in such a corpus. We can check this chain of logic experimentally

by comparing various measurement algorithms. Whichever procedure produces the smallest

variance in peak timing is presumably least affected by segmental effects.

This simple maximum algorithm will now be compared to

• The Bracketed Maximum, described in §II.D.

• Smoothing the data with a median filter, then taking the time at which the median

is maximum. This follows Taylor, 1993 and Xu and Xu, 2003. It ignores variations of

f0 on short time scales such as 100 milliseconds or less. These short time scales are

where the segmental effects are most dramatic.

• Smoothing the data by averaging over a window centered around each point, and then
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taking the time when the average is maximal.

• The MOMEL algorithm of Di Cristo and Hirst (1986); it transforms intonation

contours into a quadratic spline approximation, producing a smooth representation

that bridges over unvoiced regions.

A priori, one expects that these approaches generally will smooth away structures on short

time scales (e.g. segmental effects) and will generally preserve longer, suprasegmental f0

motions.

B. Data

I use a corpus of utterances with fixed sentence patterns where there is reason to believe

that the intonational phonology always specifies a peak in the same position. One can then

compare algorithms to see which one gives a more stable estimate of the intonation peak.

The database consists of single-syllable words embedded within a frame sentence (Slater

and Coleman, 1996); it was previously collected for a different purpose. The corpus contains

4970 utterances from a single speaker of Southern British English, each recorded five times.

There are four frames used: “Can you utter ‘X’ again, please?” (used where X is a word

in the form CxC, beginning and ending with a consonant), “Can you utter ‘X’ today?”

(X is CxV , beginning with a consonant and ending with a vowel), “Have you uttered ‘X’

again?” (X is a V xC word), and “Have you uttered ‘X’ today?” (X is V xV ). The speaker

was phonetically trained and knew he was reading a list containing minimal pairs of English

words. In such a database, the frame sentence and the words are semantically neutral, and

the syntax is such that any word can be used as X. Consequently, the intonation should be

identical within groups of utterances that share the same frame.

One expects an accent on the variable word, because it is most informative. (General

information on focus and accent location can be found in Ladd (1996, §5.1) and refer-

ences therein.) The accented word should thus be louder and longer than its neighbors

(e.g. Kochanski et al., 2005 and references therein). A random sample of 100 utterances
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were checked by the author, and an obvious prominence was heard on the variable word in

98 cases. In three of those 98 cases, words in the frame were judged to be as prominent

as the variable word. So, in 95 out of the 100 samples, the variable word was the most

prominent word in the utterance.

C. Signal Processing and Overview of Data

The acoustic data were processed to extract time-series measurements of quasi-duration,

loudnessa, f0, and aperiodicity, as per Kochanski et al. (2005). Time axes were normalized to

span the range from 0 to 1 between the beginning of the second syllable of “utter”/“uttered”

and the end of the first syllable in “today”/“again”. Thus, normalized time 0 to 1 always

spans three syllables and the variable syllable is centered near 0.5.

For each utterance, we compute estimates of the prosodic peak position for different

values of the measurement offset ∆. This yields values ti(∆) where i indexes the utterance.

We included only f0 maxima on or near X by restricting the analysis to f0 data

with maxima at normalized time between 0.2 and 0.8. We did this because the f0 in

“utter”/“uttered” can sometimes be higher than the peak f0 within the variable syllable15

(see Figure 11); this can lead to unexpected results in the computed peak positions.

Utterances where either tL or tR was outside that region were dropped.

A scatter-plot of the quasi-duration for the corpus is shown in Figure 9; this is computed

per Kochanski et al. (2005). (At each time, the quasi-duration measures how far one can

go forward and backwards in time before the spectrum changes substantially. The quasi-

duration at any time is roughly proportional to the duration of the phone at that time.) The

frame syllables are centered near normalized times of 0.17 and 0.82 and the variable syllable

is approximately centered. The variable syllable typically has a longer vowel with a more

stable formant structure than found in the frame syllables. (The region near normalized time

0.3 corresponds approximately to the boundary between the preceding frame syllable and

the variable syllable.) A plot of an estimate of the perceptual loudness appears in Figure 10.
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FIG. 9. Quasi-duration scatter-plot for the entire corpus. The quasi-duration is a measure

of the stationarity of the speech spectrum; small values imply a rapidly changing spectrum.

The plot shows the log of the normalized quasi-duration against normalized time, otherwise

plotted as per Figure 11.
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FIG. 10. Normalized loudness vs. normalized time for the entire corpus. Plotted as Figure 11,

except that all dots are the same size.
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FIG. 11. Fundamental frequency of the entire corpus. This plots normalized f0 against

normalized time for the region of interest. The horizontal axis goes from the beginning of

the syllable before the variable syllable to the end of the syllable after. The vertical axis is

f0 deviation from 170 Hz, in semitones. This is a smoothed scatterplot of f0 measurements.

(The vertical stripes, e.g. near x = 0.5 are the result of the 10 ms interval between f0

measurements.)

The variable syllable can be seen to be typically longer and louder than its neighbors, and

thus should typically be prominent. (Incidentally, one can see a bimodal distribution of

loudness from the two possible frames near normalized time 0.25.)

Figure 11 gives an overview of f0 data from the entire corpus. It shows a three-syllable

region centered on X, plotted as per Braun et al. (2006). It is created by placing 342000

dots, one per f0 measurement. In the plot, dot sizes are proportional to an estimate of the
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FIG. 12. Sample flat-topped f0 profile.

perceptual loudness in regions where the speech waveform is approximately periodic and are

reduced where the waveform is aperiodic. This emphasizes loud, periodic regions (e.g. the

central vowel of each syllable and regions where the f0 data is most reliable). The image has

been smoothed slightly to reduce printing artifacts; this blurs the individual dots slightly.

The variable syllable typically also has an f0 peak, providing further evidence of its prosodic

prominence.

1. Flat-Topped Profiles

In many utterances, the f0 peak position is not completely clear, usually because the f0

curve has a flat top with no obvious peak. These are commonly known as Plateaus (House

et al., 1999; Ogden et al., 2000; Wichmann et al., 1997). Figure 12 shows one such example.

(Note that this utterance was chosen to display a plateau; for f0 data representative of the

corpus as a whole, see Figure 11.)

To count flat-topped utterances, I looked for utterances where many points would likely
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to be indistinguishably high. I defined top points to be voiced points within 3 Hz of the

second-highest f0 value. (The point with highest f0 was ignored on the grounds that it was

commonly at the edge of a voiced region and the waveform was usually not stationary there.)

The f0 differences among these top points are small enough so that the listener is unlikely

to be able to reliably pick one as higher than another. (See §II.E.) Considering the speaker,

small muscle tremors or other linguistically unimportant changes in production could push

f0 up or down by 3 Hz, so any top point could plausibly have been an intended intonation

maximum (this follows House et al., 1999; Knight and Nolan, 2006).

In each utterance in the corpus, a computer program found the largest interval starting

and ending on top points that contains at least 50% of top points. The length of this interval

provides an estimate of the uncertainty in the time of the maximum: it measures the length

of the flat top of the utterance. Using this criterion, 9% of the utterances have intervals

of plausible maxima longer than 100 ms and 36% have intervals longer than 60 ms. This

criterion, while somewhat arbitrary, shows that a substantial number of utterances have

tops that are flat enough so that segmental f0 perturbations could lead to large changes in

the timing of the maximum.

D. Results: Comparison of Algorithms

To compare different approaches, we computed the variance of the peak position over

the corpus. Since the underlying accent is expected to be in a stable location, the algorithm

that provides the most stable measurement should be the most accurate. (See Appendix A

for a justification of this assumption.) This idea is a common way of choosing a measurement

technique; see Kochanski and Orphanidou, 2008 in phonetics and Sachs et al., 1995, Krolik,

1996, Abel, 1990 in other fields. However, this paper is not a full-blown competitive

evaluation, primarily because the testing corpus is produced by a single speaker.

In our corpus, there is a built-in dependence of the frame sentence on the initial or

final segments of the variable word. This could possibly cause the prosodic peak position
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FIG. 13. Left: variance of the bracketed maximum estimate of the prosodic peak position,

plotted against ∆. The solid line shows the variance of the entire corpus. The simple

maximum is shown by the dash-dot line, for comparison. Right: variance of algorithms that

smooth the f0 data and then take the maximum. The variance is plotted against the width

of the smoothing window. The best MOMEL result is the grey dot. (MOMEL does not

have a comparable smoothing parameter, so the horizontal axis is irrelevant.)

to depend on the segmental structure if the type or alignment of the accent depended

on the choice of frame. However, this problem is avoided by splitting the corpus into four

sub-corpora, one for each possible frame, and then computing the variances separately within

each sub-corpus.

Figure 13 shows this variance for different algorithms. (See Appendix C for comparisons

of the various sections of the corpus.)

As the measurement offset is increased, the variance of the bracketed maximum pro-

gressively decreases. Thus, the best measurement of the underlying accent position is made

with ∆ as large as possible. For all ∆ > 3 Hz in this data set, the variance is reduced by a
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statistically significant amount. The significance level improves from P < 0.05 at ∆ = 3 Hz

to P < 10−6 at ∆ = 10 Hz. For ∆ = 10 Hz, the variance is reduced by 9%, and for

∆ = 20 Hz, the variance is reduced by 21%.

Note that this reduction is a fraction of the total variance, which includes both the

errors induced by segmental effects and also the intrinsic variability in the peak alignment

(see Appendix A for discussion). Thus, the fractional reduction quoted here gives a lower

bound to the reduction of the segmentally-induced measurement error.

The largest practical ∆ is set because the algorithm can only measure peak positions if

the peaks are larger than ∆. For this dataset the the fraction of unmeasurable syllables

is small (less than 1%) as long as ∆ ≤ 20 Hz. This is consistent with §II.E because

the psychophysical and linguistic evidence can only establish minimum peak sizes for

intelligibility; nothing prohibits a speaker from using an f0 peak larger than the minimum.

However, this 20 Hz upper limit for ∆ should be treated as an estimate, as substantial

inter-subject and inter-style differences in f0 range are not unknown.

When this new procedure is used, the largest possible value of ∆ should be used, so

long as linguistically important f0 peaks are not lost. Users should be aware of the tradeoff

between large ∆, which provides the most reliable timing measurements but cannot measure

smaller peaks, vs. small ∆, which provides less advantage over a simple maximum but can

operate on small peaks.

The right side of Figure 13 shows corresponding results for two algorithms that smooth

the f0 contour and then take the simple maximum. The performance of these algorithms is

plotted as a function of the width of the smoothing window. Using an arithmetic smooth

with a 110 ms-wide window (i.e. taking the mean of all points that are voiced and within

55 ms of the point under consideration) reduces the variance by 13%.

However, the variance worsens for large smoothing windows. Presumably, the smoothing

window is becoming wide enough to significantly distort the shape of p(t). This optimum

point may be the width where the increasing systematic distortion becomes more important

than further reductions in segmental effects. Since this optimum point is likely to depend
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on the speech rate, mean spacing between accents and other characteristics of the corpus,

in practice, it would be safer to use a smaller smoothing window. With a 90 ms window, an

arithmetic smooth improves the variance by 12%. This improvement is very similar to the

bracketed maximum algorithm’s performance when operated with a relatively safe value of

∆ = 10 Hz.

Results for the median smoothing algorithm are similar, but not as good (for the

particular speaker who produced our corpus). The optimal window width is then 60 ms,

which yields an improvement of 10% in the variance. The median smooth behaves very

badly for large window widths; for windows 100 ms or wider, it is worse than the simple

maximum. This is doubtless related to the flat tops that are typically produced on intonation

peaks when f(t) is subjected to a median smooth. After a median smoothing operation,

there is often no unique maximum, with several points near the top of the peak having

mathematically identical values. The final step of applying the simple maximum to the

smoothed curve then can behave badly.

Both of these smoothing-based algorithms can improve the accuracy of the timing

estimation, but the bracketed maximum can out-perform them under some conditions (i.e.

for this corpus when ∆ > 14 Hz).

MOMEL (Hirst and Espesser, 1993; Di Cristo and Hirst, 1986) does not yield an

improvement to the peak location accuracy. We ran MOMEL in 180 different ways; the

best performance in terms of timing variance is plotted in Figure 13 (right), which is nearly

the default (Hirst and Espesser, 1993) parameters. All the runs used f0 data sampled at

10 ms intervals. The best-performing six sets of parameters are all close to the recommended

defaults for the program, with 1.032 ≤ maxerr ≤ 1.044, and other parameters falling between

80% and 110% of their default values of win1 = 30, win2 = 20, mind = 5, and minr = 0.05;

none of the top six runs used the “–non-elim-glitch” flag. All of the top 45 runs (including the

run plotted) mask MOMEL’s output with a voicing indicator, so that it does not interpolate

f0 into unvoiced regions. The alternative (treating MOMEL’s result as valid in unvoiced

regions) leads to a peak position variance which is 20% larger than applying either MOMEL
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or the simple maximum over voiced regions.

This result is perhaps not surprising, because MOMEL is used differently from its

intended application. It was intended to represent entire utterances, and intended to provide

an smooth f0 curve that is intonationally equivalent to the input data. Here, it is being

used on a small fragment of an utterance, extracted from the middle, and we are expecting

it to smooth away segmental effects.

IV. CONCLUSION

Segmental effects are surprisingly important to experiments that measure the timing of

f0 peaks, if a superposition model of intonation is adopted. It has been shown that:

• peak positions can be strongly influenced by the segmental structure near the peak,

and

• very small changes in the underlying intonation can lead to large jumps in the measured

peak position.

The model shows that there can be unexpectedly large correlations of peak positions with

the segmental content of the utterance. These problems arise because in a superposition

model, the measurable quantity (f0) is different from the underlying prosodic contour. Even

with fairly large intonational swings (such as 3 semitones), segmental effects should not be

ignored, and they are increasingly important when the pitch range becomes smaller. This

effect can lead to the “anchoring” of f0 peaks to segments that boost f0. Conversely, peaks in

f0 will be repelled from segments with especially low f0. Under plausible assumptions, this

can generate a bimodal distribution of f0 peak positions that is unrelated to any underlying

phonological distinctions.

This work shows that any f0 peak much less than 10 Hz tall will have its height

and alignment strongly affected by segmental effects. Even if there is lexically identical

comparison data, the peaks in f0 will be systematically biassed towards segments with a

higher intrinsic f0. (Also, a review of the literature suggests that such a small peak is
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unlikely to reliably communicate anything to the listener.) Consequently, f0 peaks with

small excursions may best be ignored, or used only in situations where segmental effects

are well understood. Overall, peak timing measurements need to be conducted with careful

consideration of segmental effects.

These observations imply that peak timing measurements should not be simply inter-

preted as the alignment of the peak of an underlying prosodic contour in superposition

models of intonation. Overall, segmentally-influenced differences between underlying and

measured peak positions are large enough so that to properly interpret many experiments

in terms of intonational phonology, a numerical model of segmental effects will be necessary.

Of course, superposition models are not mandatory. However, if one wishes to main-

tain the distinction between the surface f0 and an underlying phonologically-determined

intonation contour, some sort of model is necessary to connect from one to the other. It

seems likely that similar effects will be seen for a broader class of models, including all those

referenced herein. An alternative is that phonological analysis would be conducted on the

observable f0 directly. This would have the implication that f0 should be identified directly

with phonological intent, thus erasing any sort of competence/performance distinction.

This paper also presents a technique for measuring the timing of peaks, the “bracketed

maximum.” In simulations, it yields a substantially better estimate of the underlying

prosodic peak position than simply taking the time of the maximum f0. The bracketed

maximum is tested on speech data, on a corpus where the accent positions are believed to

be known à-priori. It can give significant reductions in the variance of the estimated peak

position, and can behave as well or better than existing techniques that involve smoothing

the f0 contour.
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APPENDIX A: INDEPENDENCE AND MINIMUM VARIANCE

For a superposition model of intonation, it is possible to show that the best algorithm

is the one that gives the least variance. Thus, one can compare two ways of estimating the

underlying peak position by simply comparing the variance of the estimates.

Formally, we will compute the variance of the estimated peak positions from each

algorithm. We consider the output of algorithm X, tX , to be the sum of two random

variables: the time at which p(t) has a maximum (P ) plus an error caused by segmental

effects (SX). If SX is independent of P , the variances will add nicely so that

var(tX) = var(PX) + var(SX). (A1)

Since we compare all the algorithms on the same corpus, var(S) is the same for all algorithms.

Thus the algorithm with the smallest var(tX) will have the smallest var(SX), and therefore

it will have the smallest mean-squared error in estimating the timing of the prosodic peak.

For S to be independent of P , it must meet three conditions:

1. The prosodic peak position must have no intrinsic dependence on the segmental

structure. This is true for all superposition models; it would not be true for a model

where p(t) explicitly depends on the segments.

2. The corpus must have no built-in correlations between the segmental structure and

the underlying prosodic contour (i.e. with the expected type of accent). This should

be approximately true for the corpus used here, especially after we split the corpus

into sub-corpora that have uniform frames. See §III.B and §III.D.

3. The algorithm must have no dependence on the segmental structure. Any algorithm Q

has that desirable property if (1) it is computed just from f0, and (2) if the algorithm
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does not depend on the choice of origin for the time axis, i.e. Q{f(t+η)} = Q{f(t)}+η

for any η. Thus, if one were to delay the speech by 1 second, the result of the algorithm

f0 should also be delayed by 1 second. All the algorithms we consider have both

properties.

Thus, the algorithm that has the smallest variance of its estimates will have the smallest

errors between its estimates and the underlying position of the peaks of the prosodic contour.

This will be true even if there is some intrinsic variability in the underlying prosody.

APPENDIX B: EDGE CASES

The discussion of the operation of the bracketed maximum algorithm in §II.D assumed

voicing everywhere. This section discusses cases where unvoiced regions are important.

Ultimately, though, its value will be tested experimentally in §III.

1. Prosodic Maximum within, but near the edge of voiced region

Figure 14 shows sample data annotated to show the operation of the bracketed maximum

algorithm. In this situation, one of the bracketing measurements may end up at the

voiced/unvoiced transition. Under some common conditions, such as a large positive

segmental shift at the edge of a voiced region (e.g. van Santen and Hirschberg, 1994,

Figure 4), the bracketed maximum should provide a substantially better estimate of the

position of the peak of p(t) than would the simple maximum. However, the average accuracy

relative to the simple maximum is not trivial to predict.

2. Prosodic Maximum in unvoiced region

In this case, neither the simple maximum nor the algorithm presented here can accurately

mark the prosodic peak. The bracketed maximum will typically be less accurate than the

simple maximum, as it is biassed away from unvoiced regions. However, from the point of
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FIG. 14. Sample audio data, plotted as Figure 6. This data was chosen to show the

operation of the bracketed maximum algorithm, when the f0 maximum is at the edge of a

voiced region.
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view of human-to-human communication, this ought not to be an important case. If the

precise timing of f0 peaks is indeed an important part of the language, it seems unlikely

that the language’s phonological rules would evolve in such a way as to put the peaks where

they cannot be heard.

APPENDIX C: SECTIONS OF THE CORPUS

The corpus (§III.B) has a mixture of four different frames, and Figure 13 shows the

average over the entire corpus However the different frames could have different behaviours.

We check this by re-plotting Figure 13 with the data from each frame separately.

Figures 15 and 16 show that the various components of the corpus have qualitatively

similar behaviours, especially for the bracketed maximum algorithm. Variances are generally

lower for words beginning with a consonant than for those that begin with vowels. (These

words are also more common, so they dominate the overall average.) Possibly, f0 shifts

caused by consonants constrain the peak position, thus reducing the variance. Figure 16

shows somewhat different behaviour for Cx words vs. V x words: the variance of the latter

rises when a large smoothing window is used.

ENDNOTES

1. This term assumes that there is an underlying prosody that you are attempting to

produce (e.g. this is your linguistic competence), but that the actual performance

is disturbed by other effects. “Prosodic peak” refers to the peak of the underlying

prosody. Equation 1 provides a mathematical model of this idea.

2. For instance, one cannot describe animals with a superposition model of heads onto

bodies. This is because some combinations, such as putting a horse’s head on a

hummingbird’s body, do not yield biologically valid animals.

3. The model in van Santen and Hirschberg (1994) and van Santen et al. (1998) is not
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FIG. 15. Left: variance of the bracketed maximum estimate of the prosodic peak position,

plotted against ∆. The lines show the variance of each section; the dot-dash pattern indicates

the form of the word (§III.B). Right: variance of algorithms that median-smooth the f0

data and then take the simple maximum. The variance is plotted against the width of the

smoothing window. (The appropriately weighted average of these curves corresponds to the

dot-dashed line in Figure 13, right.) Results for MOMEL are shown by the large grey dots,

and are labeled by the form of the word.
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FIG. 16. Left: variance of the bracketed maximum, plotted as per Figure 15. Right:

variance of algorithms that mean-smooth the f0 data and then take the simple maximum.
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strictly a superposition model because the segmental effects are not independent of

the prosodic contour. The prosodic contour in their model explicitly depends upon

the segmental structure.

4. This independence assumption implies that segment-related frequency shifts are the

same in high f0 regions as in regions with low f0. For the purposes of this paper,

it does not much matter whether this is true on a linear or a logarithmic (or other)

frequency scale.

5. Alternatively, if segmental frequency shifts are a core part of the language, then some

of the available intonation information is being used to help listeners discriminate

vowels. This alternative implies that, to be unambiguous to a listener, prosodically

meaningful pitch motions would be at least as large as segmentally-related f0 shifts,

which would strengthen the arguments in §II.E.

6. However, one can imagine that the example might correspond to a nonsense phrase

like “mamimamimami. . . ”

7. The possibility of seeing spurious f0 maxima due to segmental effects was mentioned

in van Santen et al. (1998).

8. For example, Gussenhoven (1999) argues (based upon Pierrehumbert and Steele, 1989)

that “. . . , if subjects were to produce a bimodal distribution of peak times in their

imitations, then the difference must be categorical.” Their deduction can now be

seen to be incorrect, given the counterexample presented here that is bimodal but not

discrete.

9. The misinterpretation need not be on the part of a linguist. To the extent that

peak positions are perceptually important, the listener might also perceive a sharp,

phonological distinction that was not necessarily intended by the speaker. Possibly,

this effect could lead to listeners later intentionally producing a bimodal distribution

of peak positions, which might eventually lead to a phonological distinction becoming
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part of the language. Such an effect is presumably most likely on common phrases,

where the same segmental structure might be used with a variety of intonation

patterns. (Private communication, Elinor Payne, 9/2008.)

10. By “simple maximum,” I mean the time of the peak f0. Mathematically, this is often

written as argmax{f(t)}.

11. Hawkins and White (1988) argues that the the builders of Stonehenge used this idea to

mark the day of most northerly sunrise. So, this technique may have been discovered

before c. 2800 BCE.

12. Two measurements are approximately independent if knowledge of one thing is only

very slightly useful in predicting the other.

13. If declination and/or down-step were well enough understood to be predictable without

reference to the speech data, it might make sense to use a larger ∆ on the forwards

side. However, such an algorithm might misbehave badly at places where the right

side of a peak is higher than the left.

14. Note that these experiments involve comparisons of sentences with identical sequences

of phones, so the listener does not need to compensate for segmental effects. The

listener’s task in these experiments is thus easier than in natural speech, and these

discrimination thresholds should thus provide a lower bound on how much f0 shift is

necessary to indicate an accent under more realistic conditions.

15. Note that high f0 peaks are neither the only nor the best indicator of prominence. See

Kochanski et al. (2005) for discussion of this point.
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