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Which acoustic properties of the speech signal differ between rhythmically prominent syllables and non-
prominent ones? A production experiment was conducted to identify these acoustic properties. Subjects read
out repetitive text to a metronome, trying to match stressed syllables to its beat. The analysis searched for the
function of the speech signal that best predicts the timing of the metronometicks. The most important factor in
this function is found to be the contrast in loudness between a syllable and its neighbors. The prominence of a
syllable can be deduced from the specific loudness in an (approximately)360 millisecond window centered on
the syllable in question relative to an (approximately) 800 millisecond-wide symmetric window.
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I. INTRODUCTION

Patterns of prominence define the rhythmicity of speech,
which is an important characteristic of stress-timed languages,
English among them. The purpose of this study is to find
which acoustic properties of the speech signal mark rhythmic
prominence. We investigate this with a new production-based
experiment; it involves auditory perception only to the extent
that subjects extract a beat from a metronome tick.

While a number of papers have studied acoustical correlates
of prominence, human perception of speech has played a cen-
tral part in most of them, with listeners being asked to identify
prominent units in speech. The prototypical experiments are
Fry (1955, 1958), who synthesized isolated disyllabic words
and asked listeners to choose which syllable was stressed
(≈ prominent). These papers are mostly of historic interest
because the synthesis may not have been very realistic and the
stimuli were very simple compared to natural speech.

Other workers (Beckman, 1986; Streefkerket al.,
1999; Brenieret al., 2005; Silipo and Greenberg, 2000;
Kochanskiet al., 2005) have studied more realistic speech,
some using actual conversations. These studies investigated
the relative importance of a variety of acoustic factors to
prominence. Streefkerket al. (1999) tested several acoustic
features such as duration, loudness, spectral slope of vowels,
as well as medianf0 over a syllable, and the range off0 over
a syllable. They concluded that all but the spectral slope had
promise as predictors of prominence.

Brenieret al. (2005) tested 12 acoustic and lexical fea-
tures and found that the maximum intensity was the most
effective for emphasis detection, followed by duration and
f0. Silipo and Greenberg (2000) found that a combination
of intensity and syllable duration was the best predictor
of their “prosodic stress” (prominence by our definition).
Kochanskiet al. (2005) tested syllable prominence in seven
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dialects of British and Irish English and concluded that loud-
ness and duration primarily marked prominence in speech,
with f0 relatively unimportant. The experimental consensus is
that louder and longer syllables tend to be heard as prominent.

Most of these papers suffer from a common problem: the
task used to define prominence is highly artificial and unnat-
ural. Prominence was evaluated by a variant of the following
experimental procedure:

1. Display the speech waveform andf0 trace on a com-
puter monitor.

2. Allow the subject (typically a linguist) to listen to the
utterance or parts thereof many times.

3. Have the subject find and mark any prominent syllables
on the computer screen.

Participants in a conversation normally don’t see a graphical
representation of the speech, and they hear each utterance
only once. Further, they do not consciously classify each
syllable as prominent or not,1 nor is a mouse click the normal
behavioral response to speech. Consequently, it is important
to see if one would get similar results with a different task.

In our experiment, we employ a more natural approach by
giving subjects a production rather than a perception task.The
classic production experiment is Lieberman (1960), who built
a machine classifier to study acoustic properties of promi-
nence. He made perceptual judgments unimportant by select-
ing sentences that had unambiguous prominence patterns, at
the cost of studying utterances that were presumably much
more carefully articulated than normal speech. Fearet al.
(1995) is a noteworthy modern representative of such ex-
periments. Rhythmic speech, often spoken to a metronome,
has been extensively studied in relation to stress in speech
production and perception (Fowler, 1979; Cummins and Port,
1998; Lehiste, 1973). Boutsenet al. (2000) is a recent pro-
duction experiment; they concluded that speakers use inten-
sity to mark stress patterns, in agreement with the majority
of perception-based experiments. Our experiment is most
closely related to Cooper and Allen (1977) who collect very
similar data however we use a different analysis to look at
the loudness contrasts in more detail. They focus on the
differences between normal subjects and stutterers; we look at
what aspects of the speech of normal speakers most accurately
reflects the metronome rhythm.
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We ask subjects to read text to a metronome, matching their
reading to the beat. Before the experimental part of the task,
there is a training part which is intended to accustom the sub-
jects to treating metronome ticks as proxies for prominence.
We then analyze the speech to find stable timing relationships
between acoustic properties and the metronome ticks.

One important feature of our work is that we use naive
native speakers, rather than linguists. This reduces the pos-
sibility that the prominence marks may be influenced by the-
oretical expectations. No conscious judgments of prominence
are required and no visual cues are involved in this experi-
ment. This experiment provides a different experimental view
of prominence, with different biases and limitations from the
classical technique.

One could argue that the task is not ideal in that the phrases
must be spoken repetitively, which brings in the risk that
repetitive speech is different from more natural speech. How-
ever, we have checked this possible problem in other, more
recent work (Kochanski and Orphanidou, 2007). We found
that spectral differences between repetitive speech and speech
from a list of randomized phrases are not large, so one would
expect other aspects of speech, like prominence, to be simi-
larly unaffected.

Work has been published in the related field of mu-
sic analysis, where algorithms have been designed to ex-
tract the beat and/or metrical pattern of music using metro-
nomic stimulation. See Scheirer (1998), Klapuriet al.(2006),
Todd and Brown (1996), Large and Palmer (2002) and refer-
ences therein. The techniques differ from ours for various
reasons, for instance, unlike speech, many musical sounds
have sharp onsets (e.g. drums, pianos). Further, algorithms
can exploit the fact that the beat of music is very nearly
periodic; they can keep long-term correlations and use them
to help predict the next beat. Conversely, our algorithm is
designed to be applicable to normal speech, which is not very
periodic. It therefore operates on a small window of time, with
no explicit memory of previous prominences.

II. EXPERIMENTAL METHODS

The experiment involved several tasks and lasted for ap-
proximately 1 hour; only some of the later tasks are analyzed.
The earlier tasks were intended to train the subjects to put the
metronome beat on metrically prominent syllables.2

A set of 53 short phrases (4–6 syllables) were central to
the experiment (see Appendix B for a list). The phrases had
4 different metrical patterns: 12 ofSuSu, 12 of uSuS, 13 of
SuuSuu, and 16 ofSuuSwhereS denotes a stressed syllable
and u unstressed.3 The phrases were selected from Project
Gutenberg (Hart and volunteers, 2006), based on patterns of
stress predicted by Unisyn (Fitt and Isard, 1999; Fitt, 2002).4

Phrases were selected for broad coverage of phonemes, min-
imal repetition of words, and a lack of obsolete and unusual
vocabulary. They were reviewed to confirm that the Unisyn
stress assignments led to a reasonable reading. All phrases
have at least one polysyllabic word and they have an average
of 1.4 monosyllabic words.

As a warm-up, subjects read out a poem (Nesbitt, 2001,
“My Excuse”) and then read it out again while tapping their
finger to what they considered to be stressed syllables.

Next, a metronome was connected to an earphone, and
subjects were asked to choose the two most comfortable rates
at which they could read text with a strong metrical pattern.
To pick a comfortable metronome rate, the metronome was
started and the subject was asked to read the poem again.
After a few lines, the subject was asked “faster, slower, or
is that OK?” If necessary, the metronome was adjusted by one
click (typically 4 beats per minute) and the process continued
until the subject said “OK.” They were then asked to pick a
second rate, either 4 beats faster or slower than the first one.
They then read the poem at both rates, matching their reading
to the beats of the metronome.

In the next tasks, subjects read 48 short paragraphs from
which the phrases had been extracted, then read a randomized
list of 264 phrases which included 5 repetitions each of the
above set of phrases.5

In the final set of tasks, subjects were presented with the
above set of phrases, from which 4 groups of 12 were ran-
domly selected, with the groups balanced by metrical pattern.
Subjects were asked to read out 10 consecutive repetitions of
each phrase. The repetitive task was intended to allow the
subject to settle upon the easiest (perhaps the most natural)
metrical pattern. The number of repetitions was intended to
allow subjects to conveniently say them all in one breath. The
first group of 12 was simply read out. For the second group,
the subject was asked to read and simultaneously “Tap your
finger to what you consider a stressed syllable.”

We analyzed the data from the third and fourth groups of
12 phrase, which were read out to metronome ticks. One
group was read at each of the two rates that the subjects
chose earlier. Subjects were instructed to “Read, trying to
follow the beat of the metronome.” The metronome rates
were 86±7 beats per minute (0.71±0.06 s intervals between
beats), and the mean length of 10 repetitions of the phrase was
13.4±2.4 s. (In this paper, means and standard deviations are
given in the formµ±σ whereσ is the standard deviation of the
distribution, not the standard error of the mean.) There were
0.91±0.15 metronome ticks per stressed syllable (assuming
stress as predicted by Unisyn).

Participants were linguistically naive speakers of Standard
Southern British English. All were either undergraduate or
graduate students at Oxford University. Five females and four
males were recruited by mailing list advertisements.

Each subject was recorded with an electret microphone po-
sitioned approximately 10 cm from his/her mouth, to the side
of the breath stream. Recordings were taken in a acoustically
insulated recording booth. The audio signals were sampled at
32 kHz with 16 bit resolution.

Metronome ticks were fed to the subjects through an “ear-
bud” style earphone on the opposite side from the microphone
that recorded their speech. It was adjusted to a comfortable
loudness level for each subject. The metronome ticks were
recorded on one channel of a stereo recording and cannot
be heard in the other channel which carries the microphone
signal.

The start and end points of the speech were automatically
determined by an algorithm that finds the borders of a loud
interval, surrounded by quiet regions on both edges. It is
a modified version of techniques used in (Kochanskiet al.,
2005). All endpoints were manually checked at the same time
we checked the tick marks. Fewer than 10% were adjusted.
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FIG. 1. Possible shapes for the convolution kernel,K(τ). More
possible shapes can be obtained by reversing the time (delay) axis or
the vertical axis.

III. ANALYSIS TECHNIQUES

In the analysis, we search for the function of the speech data
that is best at predicting the metronome ticks. The functionis
expressed as a simple algorithm that has several adjustable
parameters. It takes a waveform and yields a set of predic-
tions; we compute the timing accuracy of the predictions and
adjust the parameters to maximize that accuracy. We can
then interpret the parameters to see how the subjects express
rhythmical prominence.

A. The Algorithm

The algorithm computes a signal from the speech wave-
form, convolves the signal with a kernel, and picks maxima of
the result. Large maxima become predictions of metronome
ticks. The signal we use is related to the perceived loudness
of the speech, but we also try modifications that include infor-
mation from the pitch of the speech, voicing, and the overall
slope of the local speech spectrum.

It is motivated by perception experiments (Kochanskiet al.,
2005) showing that prominent syllables are typically louder.
The algorithm begins by computing a time series of the spe-
cific loudness,L(t), from Kochanskiet al. (2005)6, derived
originally from Stevens (1971). This specific loudness is then
convolved with a kernelK to yield x(t) as an intermediate
result. We use7

x = K ∗ (L ·g). (1)

Other acoustic properties of the speech will be included via
g, and will be described in more detail in §III.B. We will test
different values forg, beginning withg = 1, then functions of
f0, voicing periodicity, and spectral slope.

We chose a product form in Equation 1 to express the
fact that the other acoustic parameters become irrelevant as
L approaches zero. For instance, if the signal is quiet enough
relative to near-by regions, the pitch of the quiet region will
be perceptually unimportant.

We choose a convolution kernel,K, which has a zero mean
and is the difference between two Gaussians:

K(τ) = e−(τ−aσ)2/2(bσ)2
−be−τ2/2σ2

, (2)

whereτ is the time delay,σ controls the overall width of the
kernel,b (which is typically less than 1) is the relative width
of the positive Gaussian, anda controls where the positive
Gaussian sits. Ifa = 0, K is symmetric in time and corre-
sponds to the difference between a syllable and both of its
neighbors; ifa 6= 0, then the contrast with either the left or the
right neighbor is more important. One can interpretσ as the
width of the region that is used to normalize the local loudness
information.

Figure 1 shows the range of shapes thatK(τ) can take. The
top two would respond best to step-wise increases inL · g,
the next down responds to the contrast of a syllable with the
nearest syllable on each side. The next two show contrasts
against broader regions than the nearest neighbor(s), and the
lowest curve shows a kernel that responds to a local minimum
in L ·g.

In the next step, we consider regions wherex(t) is positive
and take the time of the largest value in each region,tmax

i .
The final set of syllable times,T, is then computed by drop-
ping any values oftmax

i where eitherx(tmax
i ) < r · x(tmax

i−1 ) or
x(tmax

i ) < r ·x(tmax
i+1 ). In other words, one dropst-values whose

x is substantially smaller than their neighbors. The process
is controlled by the adjustable parameterr: if r ≪ 1 all the
maxima are preserved, while ifr is close to 1 only the largest
few maxima in each utterance survive.

B. Acoustic Properties Beyond Loudness

As there is some evidence that acoustic properties other
thanL contribute to prominence judgments, we investigated
a set of alternatives forg in Equation 1. They were:

1. g1 = 1. The resulting timing estimates are based only
onL.

2. .

g2(t) = 1+η ·V(t) ·

(

f0(t)
〈 f0〉

−1

)

, (3)

where f0(t) is the speech fundamental frequency, as
determined by theget_f0 program from the ESPS
package (Entropic Corp.).V(t) is 1 or 0, indicating
whether or not the speech is voiced (it also is produced
by get_f0), and 〈 f0〉 is the averagef0 over the voiced
parts of the utterance. Thus, ifη > 0, voiced sounds
with relatively high f0 are emphasized, while ifη < 0,
voiced sounds with relatively lowf0 would be treated
as louder.

3. . g3(t) = 1+ζ ·V(t) ·

∣

∣

∣

∣

f0(t)
〈 f0〉

−1

∣

∣

∣

∣

, (4)

with variables as above. Thus, ifζ > 0, voiced sounds
with either high or low f0 are emphasized relative to
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those withf0 near average. Conversely, ifζ < 0, voiced
sounds with near-averagef0 or unvoiced sounds would
be treated as more important.

4. . g4(t) = 1−αA(t), (5)

where A(t) is the aperiodicity measure from
Kochanskiet al. (2005). (Related measures have
been developed by de Krom, 1993 and Boersma,
1993.) Vowels have small aperiodicities (typically
less than 0.5), while fricatives have aperiodicities near
1, so α controls how important fricatives (and other
consonants) are in the expression of prominence.

5. . g5(t) = 1− γS(t), (6)

whereS is a measure of the average slope of the speech
spectrum. It is related to the ratio of power below 1 kHz
to the power above 1 kHz, and is described in detail in
Appendix A. Related measures have been developed by
Heldner (2001); Sluijter and van Heuven (1996); and
references therein.

We defineS so that its histogram is approximately
centered around zero, and positiveS corresponds to
excess high-frequency power. Consequently, a positive
γ would cause sounds with more high frequency power
(like fricatives and harshly spoken vowels) to be treated
as louder; on the other hand, sounds like /m/ and gently
spoken vowels would be treated as emphasized ifγ < 0.

6. . g6(t) = g2(t) ·g4(t) ·g5(t) (7)

We conduct an analysis whereg is the product of Equa-
tions 3, 5 and 6. This allowed for prominence to be
determined by an arbitrary combination of voicing ir-
regularity, spectral slope andf0.

C. Optimizing the Parameters

We based our analysis on the metaphor of coupled oscilla-
tors (Large and Kolen, 1994; Saltzman and Byrd, 2000; Port,
2003). Following that metaphor, we constructed a time series
of phase for both the tick sequence and for the set of syllable
times T produced by the algorithm. The phase is 0, 2π,
4π,. . . at successive ticks, linearly increasing in between. The
metronome phaseφ(t) is then a linear function of time, with
a slope equal to 2π divided by the interval. A similar phase
function, calledψ(t), is defined fromT; it increases by 2π
for each element ofT. It is defined between the first and last
elements ofT that fall within the speech.

If the algorithm produced a periodic series of predictions
in T, thenψ(t) would also be a straight line. For a regular
pattern with ticks and predictions coming at the same average
rate, the slopes ofφ andψ will be equal, and the difference,

∆(t) = φ(t)−ψ(t), (8)

will be a constant. At each moment,∆ can be interpreted as
a phase difference between the stream of ticks and the stream
of predictions inT.

One could use the variance of∆(t) as a measure of how
well the two sequences are related, but it would be extremely
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FIG. 2. The phase∆(t) for a typical utterance plotted against time.
The algorithm missed a prediction neart = 10.8 s, then behaved well
for the rest of the utterance (dashed line). The solid line shows∆,
wrapped into the range from−π to π to simulate the behavior of
Equation 9.

sensitive to missed events. One missing or extra element in
T would change∆ by 2π for the remainder of the utterance.
Thus a single missed prediction could dramatically increase
the variance, as can be seen from the dashed line of Figure 2.

Instead, we compute8

I =
1
L

Z

exp(i ·∆(t)) ·dt, (9)

where the integral is taken over the part of the utterance
whereψ andφ are both defined;L is the integral’s length (in
seconds).

If the the times inT match the metronome ticks so that∆(t)
is constant, then the exponential will be a complex number
of constant phase and unit magnitude, and the magnitude ofI
will be unity. This gives the largest possible magnitude forI ;
any mismatches will reduce it. So,|I | tells how well the two
sequences match, and the phase ofI describes when the ticks
occur relative toT.

Putting ∆(t) into an exponential makes the analysis rela-
tively insensitive to dropping or adding one prediction. In
either case, the argument to the exponential changes by 2π
radians during the gap, but the value of the exponential swings
around and returns to the value it had before the gap.9 In
such a case,|I | would be reduced from 1 to about 0.9 for our
conditions. The solid line in Figure 2 shows the effect of the
exponential, wrapping together values of∆ that differ by 2π.

We can interpretI in two related ways. Starting withI = 1
as implying perfect correlation,I is reduced whenever there is
a missing or extra prediction. Alternatively, we note that when
var(∆) is much less than 1,I ≈ 1−var(∆), so that a decrease
in I can be interpreted as an increase in the variance of∆ and
thus as increased timing errors between the ticks andT.

Now we can computeI for an utterance, given the param-
eters that control the algorithm. Then, for a corpus, we can
compute the average of the magnitude ofI , i.e. 〈|I |〉 . 〈|I |〉 is
thus a function of the algorithm’s parameters. It is an over-all
figure of merit for how well the algorithm’s predictions match
the ticks.
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We then find the optimal parameters for the algorithm by
evaluating 〈|I |〉 for 90,000 randomly chosen combinations
of parameters and taking the one that produces the largest
absolute value. This simple technique for finding the best pa-
rameters was chosen becauseI , and thus〈|I |〉 , is a discontin-
uous function of the algorithm’s parameters. (More efficient
optimization algorithms are not applicable, as they typically
assume that the function to be optimized is continuous, and
often that it has continuous first derivatives.)

By optimizing in this way, we are explicitly searching for
acoustic properties that repeat with the same periodicity as
the metronome ticks. The resulting parameters will be most
representative of those utterances with one nominally stressed
syllable per metronome tick.

D. Bootstrap Resampling and Confidence Intervals

The above technique is good for finding the parameters that
give the best match to the data but it needs to be extended to
find error bars and confidence intervals. For this purpose, we
use a Bootstrap Resampling scheme (Davison and Hinkley,
1997). We compute 3400 artificial corpora, constructed by
choosing utterances from the real corpus, sampling randomly
with replacement. In each artificial corpus, most utterances
appear once, but some do not appear at all and some appear
several times. The same analysis procedure can then re-
peated for each artificial corpus, leading to optimal parameters
for each. In practice, we use a mathematically equivalent
but faster technique. We compute the values ofI for each
combination of utterance and parameters, then the Bootstrap
resampling is implemented as a weighted average in the com-
putation of〈|I |〉 . (Each weight is just equal to the number of
times that datum was chosen.)

The resulting distribution of optimal parameters then ap-
proximates what one would get by replicating the entire ex-
periment, with new subjects drawn from the same pool. So,
if one wishes to estimate the probability that some parameter
p exceeds a threshold,X, one can simply count the fraction
of artificial corpora where the optimalp > X. Thus, we use
Bootstrap resampling to generate confidence intervals for|I |
and the algorithm’s parameters.

E. Timing Data

We processed both the metronome and speech channels
with the same algorithm (§III.A). Its use on the speech
channel is a major focus of this paper; we used it to find the
metronome ticks merely out of convenience. The metronome
data is short bursts of oscillation amid silence, and almostany
algorithm will be equally successful at finding the ticks.

For the metronome channel, rather than computingL (see
§III.A), we used the RMS power above 100 Hz in the
metronome output, averaged over a 15 ms window. This
signal was then used in Equation 1 in place ofL to yield
an initial set of tick times. The algorithm’s parameters were
set by informal experiment tog = 1, a = 0, σ = 0.110 s,
bσ = 0.015 s, andr = 0.5. The result was inspected and no
errors were found.

FIG. 3. Values if |I |, averaged over the corpus. The lower left
measurement is the baseline, where acoustic data are shuffled with
respect to ticks. Other conditions correspond to the six cases of
§III.B, in order: running the analysis only onL (g = g1), and L
enhanced by other acoustical properties (g = g2...6).

The start and end points of the speech were automatically
determined by an algorithm that finds the borders of a loud
interval, surrounded by quiet regions on both edges. It is
a modified version of techniques used in (Kochanskiet al.,
2005). All endpoints were manually checked at the same time
we checked the tick marks. Fewer than 10% were adjusted. In
total, approximately 3000 syllables (and tick positions) were
examined.

IV. RESULTS AND DISCUSSION

A. Relevant acoustic measures

We first confirm that the algorithm performs better when
given acoustic data than it would without any data. This
is the basic check that it can usefully predict anything. To
do this, we first perform the analysis withg = 1 and find
〈|I |〉 = 0.572±0.02 . Then, we repeat the analysis, except we
shuffle the data so that we use ticks from one utterance and
acoustic data from another. Comparing, the shuffled results
are substantially poorer than the actual analysis, with〈|I |〉
only 0.290±0.013. The difference between normal and shuf-
fled analyses is statistically significant atz> 9 or P≪ 10−5.
Thus, based onL, metronome ticks can be predicted at much
better than chance levels. All choices ofgshow similarly large
and significant changes.

Next, we investigate which acoustic properties carry the
most information, as shown by an improvement in the tick
prediction. Can adding other information toL improve the
tick prediction? To do this, we insert different choices ofg
from §III.B into Equation 1 and see if〈|I |〉 increases. The
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results are displayed in Figure 3. Changingg to bring in other
acoustic data gives little or no improvement overg = 1.

Because the analysis withg= g6 involves more parameters,
it might be argued that we do not sample densely enough in
the higher-dimensional parameter space to find the maximum.
While an exhaustive test is not practical, we did check for this
possibility by recomputing theg = g6 case with 10 times as
many samples (9·105 sets of parameters). This makes only a
modest change:〈|I |〉 increases by just 0.01. Since the change
is small, it suggests that we have indeed sampled parameters
close to the maximum even in the higher dimensionalg = g6
parameter space, and that little further increase would be ex-
pected even with more samples.

Figure 3 shows thatL is an important correlate of the ticks,
but it would not exclude the possibility thatg is of comparable
importance toL, if g andL marked the same locations. We can
check that by looking at the distribution ofα, γ, η andζ in suit-
able optimizations. If an acoustic measurement (e.g.f0) were
important, we would expect that the distributions of (e.g.)η
(which indicates changes inf0 - see section IIIB) would be
narrow. Assume, for instance, that ticks are marked by high
f0. In that case, we would expect a positiveη so that the
contributions off0 andL would reinforce each other. Running
the algorithm with negativeη would cause the contributions
to cancel.L would then cancel the main effect off0 and vice
versa, leaving only the fluctuations; one would not then expect
the peaks ofx to be correlated with either metronome ticks,L
or f0.

Similarly, if f0 andL were anti-correlated, the same logic
would apply andη would be negative. (Ifη were near zero, it
would imply that the best tick predictions are done without use
of f0, which contradicts the hypothesis thatf0 is important.)
Either way, if f0 were important, we would expect thatη
would have a reasonably narrow distribution, on one side or
the other of zero. A broad distribution ofη, roughly centered
on zero, is thus evidence that the algorithm gets no useful
information from f0 via Equation 3. The same logic applies
to α, γ, andζ.

For α, η, and ζ the distribution is broad and overlaps
zero. The optimal values ofη for the g = g2 analysis is
0± 0.5. This provides additional evidence thatf0 does not
usefully contribute to the prediction of metronome ticks (i.e.
rhythmic prominence),10 since the distribution includesη = 0.
The deviation off0 from the average (g = g3) is also unim-
portant, withζ = 0.2± 0.9: subjects do not reliably mark
prominent syllables by pushingf0 away from the utterance
mean. Likewise, the aperiodicity is not important; optimal
α = −0.3±0.7.

On the other hand, the spectral slope has some relationship
to the ticks. The distribution of optimal values isγ = 0.6±0.3,
so that distribution overlaps zero only slightly: just 1% ofthe
sets of optimal parameters are negative. So, syllables on the
beat have some excess high frequency power. However, it is
not a large effect; we estimate thatg5(t) gives the same effect
as a 20% change inL (roughly equivalent to a 5 dB change
in acoustic power). (Perceptually, a twenty percent changes
in loudness is not large.) This is consistent with our result
that 〈|I |〉 does not substantially increase when spectral slope
information is added toL (Fig. 3). The small size of the effect
is further confirmed by computing the correlation coefficient
betweenL(t) andS(t), the spectral slope measure defined in

TABLE I. Parameters that yield the largest〈|I |〉 . The analysis
operates onL only (g = 1). The right column shows the distribution
of values that were tested in the optimization procedure (90,000
samples), and the center column shows the distribution of optimal
values that were found (3400 bootstrap corpora).

Param-
eter

Optimal Value Distribution of
Test Evaluations:
mean±stdev

σ 0.176±0.028 Gaussian 0.19±0.07
a −0.01±0.03 Gaussian 0±0.4
b 0.83±0.07 Uniform on [0.5,1]; thus

0.75±0.16
r 0.04±0.04 Uniform on [0,0.4]; thus

0.20±0.12

APPENDIX A: it is just 0.03.
The straightforward interpretation of this is just that thespe-

cific loudnesses at frequencies over 1 kHz go up more, on the
beat, than the specific loudnesses at lower frequencies. Such
a shift in the spectral balance for vowels was measured by
Glave and Rietveld (1975) and Gauffin and Sundberg (1989).

This weak correlation of a spectral slope measure with
metronome ticks is in general agreement with the results of
Kochanskiet al. (2005), though the spectral slope compu-
tations differ. A comparison with Sluijter and van Heuven
(1996) is not simple; They analyzed dependences on focus
(i.e. accent) and stress separately, while we effectively com-
pare+focus,+stress with the neighboring syllables which are
either−focus or−stress. Heldner (2001) showed that his
measure, called “spectral emphasis” is a good predictor of ac-
cent. Our results do not support this, but are not inconsistent,
as his spectral emphasis measure is substantially different.

B. How localized is prominence?

Since the primary acoustic marker of rhythmical promi-
nence isL, we now focus on that case (g = 1) and describe
the remaining parameters. Three parameters (a, b, σ) define
the shape of the convolution kernelK, and one (r) controls the
rejection of small peaks. Table I shows optimal parameters.
The rightmost column shows the distribution of parameters we
sampled; in each case, the distribution of optimal parameters
can be seen to be narrow and not too far off center, so our
choice of sampling distribution is not seriously constraining
the distribution of optimal parameters.

We also check that our analysis is not simply detecting
the gap between repetitions. This is confirmed by noting
that the median spacings between predictions inT (0.67 s
for metronome forg = 1) is substantially smaller than the
median length of a repetition (1.30 s). Thus, we are thus not
locked onto a single prediction per repetition; in fact, we are
seeing close to one prediction per stress, or two predictions
per repetition. Also, we note that the average integral over
uSuSpatterns is essentially the same as that forSuSupatterns
(0.549 vs. 0.558, not significantly different) while we might
expect a substantial difference if predictions were tied tothe
beginning of each repetition but the metronome ticks followed
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FIG. 4. Convolution kernels,K(τ), that are optimal for bootstrap
samples of the data. The maxima of the curves are aligned at
t = 0. (These kernels maximize〈|I |〉 , and haveα, γ, andη zero,
corresponding tog = 1.)

FIG. 5. Optimal bootstrap samples of the convolution kernel,K(τ)
for the g = g6 analysis. The maxima of the curves are aligned at
t = 0. (These kernels maximize〈|I |〉 , and allowα, γ, andη to be
nonzero.)

the stresses.
The optimal values ofr are small, so that the last step of the

algorithm is almost moot; it rejects very few candidates. The
other three parameters are closely coupled, and can most eas-
ily be interpreted visually, by plottingK(τ). Figure 4 shows
a set of convolution kernels that are computed from sets of
(a, b, σ) which are optimal parameters for bootstrap corpora.
The curves show examples ofK(τ) that are consistent with the
data, analyzed assumingg = 1. Since the analysis procedure
is invariant with respect to shifts of the peaks ofx, we can
align the peaks ofK for clarity without changing〈|I |〉 . The
shape ofK is important because it tells us which contrasts
are important for predicting a tick. In this case, the contrast
is approximately symmetrical: the syllables preceding and
following the metronome tick are equally quiet.

Figure 5 shows convolution kernels that are optimal for the
〈|I |〉 , g = g6 analysis. The analysis is entirely consistent with
Figure 4, but with somewhat larger scatter as we are fitting a
more complex model to the data.

The widths and relative spacings of the peaks are remark-
ably consistent. Values forσ which is related to the overall

width of the kernel are in Table I. The full-width at half-
maximum for the highest peak inK is 0.184±0.008 s, and the
magnitude of the time interval between the most positive and
most negative peaks is 0.31± 0.04 s for theg = 1 analysis,
so the entire window of relevant speech data spans approx-
imately 800 milliseconds. The numbers are similar for the
g = g6 analysis, 0.183±0.01 for the FWHM and 0.26±0.01
for the peak spacing.

The positive peaks of the kernel are as wide or wider than a
typical vowel, and about two-thirds of the mean syllable spac-
ing, 0.27 s. The full extent of the kernel, given by 2σ≈ 0.34 s,
is wider than the mean syllable spacing, and the time interval
between the positive and negative peaks is just about equal
to the mean syllable spacing. Ticks are thus correlated with
the properties of a region larger than a single syllable. Our
analysis is consistent with the hypothesis that ticks are related
to a large loudness contrast between a syllable and its nearest
neighbor(s).

This conclusion is consistent with findings by
Kochanskiet al. (2005), who show an (approximately
symmetric) loudness pattern around syllables that were
judged to be prominent. The loudness pattern observed there
was somewhat narrower, as might be expected, given the
faster speech in that study. There are some differences in
detail, however. Kochanskiet al. (2005) reported small but
significant correlations off0 andA with prominence; but we
see none here. The difference may be due to the different
tasks (e.g. production vs. perception).

An interesting feature of the these results is that the al-
gorithm unifies loudness and duration changes into a single
time series,x(t). For vowel durations shorter thanκ’s positive
peak, an increase in duration has much the same effect as an
increase in loudness; the convolution can be approximated
as an integral of loudness over about 0.2 s. It can then be
further approximated as the vowel’s loudness times the vowel
duration. Thus, peaks ofx(t) and consequently predictions in
T will tend to occur on longer syllables, rather than shorter
ones.

An analogous effect, but occuring in speech perception
rather than production, can be found in the psychophysics
literature. Munson (1947) showed that perceived loud-
ness is a generally increasing function of duration, and
Plomp and Bouman (1959) modeled the effect as convolution
of the specific loudness with a kernel. They obtained equiv-
alent widths of their kernel near 0.25 s. This is sufficiently
close to our results to support the idea that speech production
should be matched to speech perception; the peak value of
our x(t) may simply be related to the perceived loudness of
the syllable.

Our results are similar to those of Beckman (1986), who
found strong correlations of prominence with a similar com-
bination of amplitude and duration, and Silipo and Greenberg
(1999, 2000), who had the best success at predicting promi-
nence with a product of syllable-averaged amplitude and
vowel duration. It also parallels (on the production side) at
least one claim of Turk and Sawusch (1996) – viz that dura-
tion and loudness are perceived together as a single percept.

This agreement with other work is perhaps remarkable,
given the differences in experimental technique. Not least
because the experiments mentioned above involve perceptual
judgments (e.g. which syllables are prominent), while our
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FIG. 6. Theoretical loudness contours based on this work for
prominences that are (top) on adjacent syllables, (middle) separated
by one and (bottom) by two syllables. The dashed line is a loudness
reference.

experiment is strictly a production experiment.

C. Alternating Metrical Patterns and Implications for Phono logy

This result that prominence is expressed by a contrast be-
tween a syllable and its neighbors is interesting because itmay
provide a reductionist explanation of the alternating metrical
patterns that are common in many languages.

Consider a loudness pattern like Figure 4, and place it on
a uniform background corresponding to the average loudness
of speech. For the sake of argument, suppose that loudness
patterns of different syllables add. Then, Figure 6 shows the
resulting loudness patterns for prominences that are separated
by 1, 2, and 3 syllables.

One can see that the loudness patterns interfere with one
another when the prominent syllables are adjacent, and the
resulting loudness peaks are then not as dramatic as when the
syllables are farther apart. If, hypothetically, the listener had a
loudness threshold for the perception of prominence, the case
of adjacent syllables would not be perceived as prominent.

To make the adjacent case appear prominent, the speaker
would have to make those syllables unusually loud, and/or to
push the syllables farther apart so that the loudness patterns
would not interfere so strongly. We suggest that speakers
may avoid this case because of the extra effort and complex-
ity needed to ensure that a listener will perceive the correct
prominences. Over time, this avoidance may become en-
shrined in phonological rules that reduce the number of ad-
jacent stresses. If speakers avoid 1-syllable feet, the next sim-
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FIG. 7. Phase histograms (∆, relative to the phase ofI ) for three
different subjects. The subjects shown have (reading from top to
bottom, in the center) the largest, median, and smallest value of
〈|I |〉 . The subfigure shows values of〈|I |〉 for each subject, with
1-standard deviation error bars on the average. (The horizontal axis
in the subfigure has no meaning – it just separates subjects.)

plest foot is 2-syllable and this potentially might help explain
the cross-linguistically common preference for an alternating
metrical pattern.

D. Performance variation between subjects

Subjects differ substantially in terms of how consistently
they follow the metronome. This performance variability
is seen in Figure 7, which shows the phase histograms for
three speakers. Histograms for the other speakers are simi-
lar, displaying the same properties: large〈|I |〉 is correlated
with a tall, narrow peak and a low background level, while
small 〈|I |〉 implies a short broad peak sitting on a higher
background.

From subject to subject,〈|I |〉 varies from 0.13 to 0.90,
while the uncertainty in each subject’s mean due to intra-
subject variation is just 0.05. This is a large range, as the
possible range of〈|I |〉 is just from 0 to 1.

ANOVA rejects the hypothesis that the subject means are
equal withP < 10−6 (F(9,214) = 7.5). Some subjects are
therefore speaking reliably along with the metronome, while
the speech of some others has little consistent relationship to
the ticks. By observation, the subjects with the lower values
of 〈|I |〉 show a mixture of two problems: irregular pauses that
lead to jumps in∆, and speech that is simply not synchronized
with the metronome rate, leading to a gradual drift in∆.

For instance, if we select utterances that were spoken
with approximately 1 tick per stressed syllable (i.e. 19–21
metronome ticks within the 10 repetitions or 0.95–1.05 ticks
per stressed syllable), we compute〈|I |〉 = 0.69± 0.28 for
those utterances (n= 119). This contrasts sharply with〈|I |〉 =
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0.25± 0.2 for utterances which are apparently unsynchro-
nized with the metronome, having 0.65–0.85 ticks per stress
(n = 44). The three subjects who have the largest number
of these unsynchronized utterances are also the three subjects
with the smallest values of〈|I |〉 .

Because of the large range of subject performance, and be-
cause it can be automated, this task may be useful as a measure
of the ability to process metrical patterns. One possible appli-
cation is a evaluation tool for stuttering (e.g. Boutsenet al.,
2000 and Cooper and Allen, 1977, showed that stutterers had
much larger timing variance in repetitive speech than normal
subjects). The wide range of inter-subject performances that
we have observed (c.f. Figure 7) parallels the results of
Cooper and Allen (1977) for normal subjects, who found that
some subjects had timing variances roughly ten times larger
than others.

E. Analysis of high-performing subjects

Our analysis is designed on the assumption that metronome
ticks are proxies for prominence. But, ticks are clearly not
perfect proxies, especially for some subjects. This raises
the possibility that our results are affected by utterancesthat
are unsynchronized with the metronome or that have other
synchronizations (e.g. two ticks per prominence).

The majority of the utterances were spoken with approx-
imately a 1:1 ratio between metronome ticks and nominal
stresses: 56% of the utterances contained 19–21 metronome
ticks for their 20 nominally stressed syllables. A total of 18%
were near other small-integer ratios that might suggest dif-
ferent patterns of synchronization: 5% contained 9–11 ticks
(near a 1:2 ratio), 11% contained 14–16 (near a 2:3 ratio, but
informal investigation shows that many of these utterances
have no obvious synchronization), 1% contained 29–31 (3:2)
and 1% contained 39–41 ticks (2:1). The ratios of the remain-
ing 26% do not suggest synchronization between the speech
and the metronome.

To check that possibility, we repeated our analysis on the
subjects that gave us the five largest values of〈|I |〉 . These
subjects generally produced utterances that are well synchro-
nized, with one prominence per metronome tick, and thus are
particularly well adapted to our analysis. By comparing the
analysis on this subset to our main results (§IV.A), we can
check that our results are robust.

As expected, the value of〈|I |〉 for the shuffled analysis is
statistically indistinguishable from the shuffled analysis for
the full data set. Also, as expected, the values for theg1...6
analyses have increased: for theg1 analysis, ¯|I | has increased
from 0.572± 0.02 to 0.739± 0.02. Even so, there are no
differences among the various̄|I | values for theg1...6 analyses
that are larger than the corresponding standard deviations.
This supports our contention that the other acoustic properties
are not very important.

Likewise, α, η, andζ still have distributions that strongly
overlap zero, providing further confirmation thatf0 does not
play a role in the senses of Equations 3 and 4, and thatA(t)
is likewise unimportant. The spectral slope remains weakly
important, with just 4% of the optimal parameter sets having
γ < 0.

The shapes ofκ do not change substantially from those
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FIG. 8. Phase histogram (∆) for a typical speaker (outline) and
the histogram of∆ relative to the average phase of each utterance
(filled). The peak of the dashed histogram shows the typical phase
relationship between metronome ticks and the algorithm’s predic-
tions for that subject. The width of the histograms show timing
inconsistencies between the subject’s speech and the metronome.

shown in Figure 5; neitherσ, a, b, or r show changes larger
than the error bars shown in Table I. This supports our use of
the metronome tick as a proxy for rhythmic prominences.

F. Phase variation between utterances

The analysis so far only considers how stable the predic-
tions (T) are, in relation to the ticks. Any uniform phase
shift between the ticks andT will just change the phase of
I but not its magnitude, so|I | and 〈|I |〉 are insensitive to the
average phase relation within an utterance. Our analysis es-
sentially minimizes the variance of the difference betweenthe
predicted and actual tick positions. Thus, our analysis differs
from Allen (1972), who assumes that the moment when the
tick happens is the critical part of the syllable.

However, because the optimalκ happens to be symmetrical
and fairly compact, we can use it to identify the point in each
phrase wherex(t) is maximal. The loudness contour in a
region around this point gives the most consistent prediction
of the metronome ticks. We computed this forg = 1 and
optimized parameters; peaks inx(t) thus correspond fairly
accurately to peaks inL(t).

Figure 8 shows the histogram of∆ for all utterances pro-
duced by one subject. It also displays the histogram of∆
relative to the phase ofI for the corresponding utterance. We
display data from the subject who had the median value of
〈|I |〉 . The histogram of relative phase is noticeably narrower
and taller, as might be expected, indicating that differentutter-
ances have somewhat different alignments between the speech
and the metronome.

For this subject, the peak of the∆ histogram (outline) is
not at zero, indicating that the peak ofx(t) is not aligned
with the metronome ticks, but that the metronome ticks occur
somewhat before the peaks ofx(t). In other words, this subject
speaks with the ticks early in the syllable, before the vowel’s
loudness peak. However, subjects differ in their average align-
ment.

Figure 9 shows a vector plot of the phases per utterance,
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FIG. 9. The figure shows the phase relationship between the
metronome ticks and peaks ofx(t) (loudness, loosely speaking).
Each utterance (i.e. 10 repetitions of one text by one speaker) is
represented by a dot at the (complex) value ofI , with the real
part on the horizontal axis and the imaginary part on the vertical
axis. The distance from the origin is thus proportional to|I | for
that utterance. Dots near the origin represent utterances that did
not have a consistent phase relationship between loudness and the
metronome; dots on the unit circle would have a perfectly consistent
phase relationship. The angle of the point, when viewed from the
origin matches the phase ofI , and dots just to the right of the
origin come from utterances where the peak inx(t) is aligned with
the metronome ticks. Dashed circles represent the average of each
subject’s utterances.

for all subjects. The phases are distributed around zero,
indicating that on average, subjects align the peaks ofx(t)
(and thusL(t)) with the metronome ticks. If we wished to
discuss a “pr(oduction)-center” in analogy to Allen (1972)’s
p(erceptual)-centers, the pr-center appears to be near thesyl-
lable’s peak inL: the mean phase of the peak is 13±44
degrees before the tick. The concept of “pr-centers” has been
discussed by Morton J. Morton (1976) who has argued that
P-centers are ambiguous and could possibly be exerting an
influence on the production as well as the perception of words.
However, there is substantial inter-subject variation.11 In the
figure, the dashed circles show averages ofI for each subject.
Apart from the two that are near zero and thus have have no
consistent phase relationship to the ticks, some subjects place
the loudness peak before the tick, some almost on the tick, and
some place it after the tick.

V. CONCLUSIONS

In English, the beat of repetitive speech is marked by an
increase in the loudness relative to the immediate neighbor-
hood. This neighborhood is approximately one syllable on

either side of the beat, at the speech rates we studied.
The critical factor appears to be the average loudness over

an approximately 360 millisecond interval, so that as the
vowel is shortened below 200-300 milliseconds, the duration
reduction will play the same role as a reduction in loudness.
Other acoustical properties such asf0 are not strongly corre-
lated with the beat; one exception is that on average, speakers
produce somewhat more high frequency power on the beat
than off.

We suggest that this preference for loudness contrasts as
a marker of the beat may provide a partial explanation for
the relative rarity of adjacent, prominent syllables. We note
also that the width of the region over which prominence is
expressed is well matched to human auditory perception, as
might be expected.

We conducted a production experiment that had minimal
involvement of speech perception, in contrast to much prior
work on prominence. Despite that our results are in gen-
eral agreement with prior experiments. Prominence seems a
broadly useful idea, one that is shared both by linguists and
naive speakers of English, and one that has a straightforward
relationship to measureable acoustic quantities.
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shows one repetition of “We always do.”

APPENDIX A: DEFINITION OF SPECTRAL SLOPE MEASURE

The spectral slope measure we use is based on a compari-
son of specific loudnesses at high and low frequencies. The
computation begins by filtering the speech into bands that
are 1 Erb (see Moore and Glasberg, 1983) wide, on 1/2-Erb
centers, between 50 and 6000 Hz. (We use the filterbank
recommended by Baumgarte (2002).) Then, we half-wave
rectify each filter output and take the cube root of the local
intensity to approximate the nonlinear response of the ear.
This yields a set of specific loudness measures,ℓk(t), wherek
indexes the frequency band. The center frequency of thekth

band isf (k) Hz.
Next, we low-pass filter these with a frequency-dependent

time constant derived from Plomp and Bouman (1959) to
yield ℓ̃k(t). We approximate their time constants as

τ( f ) = 0.4−0.27
log( f/200)

log(104/200)
, (A1)

whereτ( f ) is in seconds.
We sum the result into two broad-band specific loudnesses,

LH(t) = ∑
k

ℓ̃k(t) where f (k) > 1000 Hz, (A2)

and

LL(t) = ∑
k

ℓ̃k(t) where f (k) < 1000 Hz. (A3)

Finally, we combineLL andLH into a spectral slope mea-
sure by computing

S(t) =
cLH(t)−LL(t)

ŝ
, (A4)

wherec = 2.8 is a constant chosen so that the average ofS(t)
is approximately zero, and ˆs (defined below) is a factor to
normalize out the average loudness. This form forS(t) has the
advantage that it is well-behaved in and near pauses, unlike
measures based on intensity ratios of two frequency bands

(Boersma, 1993; de Krom, 1993; Sluijter and van Heuven,
1996; Streefkerket al., 1999; Kochanskiet al., 2005). Also,
it is well-behaved in regions of uncertain or no voicing, unlike
the measure used by Heldner (2001).

We use

ŝ= c
∑t s2(t)

∑t s(t)
, (A5)

wheres(t) = cLH(t) + LL(t) and the sum over time is com-
puted over the entire data file containing the utterance. (Typ-
ically, the data file contains about 20% silence, counting
pauses between repetitions and a few hundred milliseconds
at each end. We chose this form for ˆs because it relatively
insensitive to the amount of silence in the data file.) An
example ofS(t) is shown in Figure 10.

APPENDIX B: LIST OF PHRASES

Exactly so. Another time.
We always do. It surely is.
You never will. I understand.
Upon my word. She goes away.
They lie apart. The business here.
Indeed it had. I noticed that.
Nothing matters. Checker players.
William Roper. Scarlet Letter.
Goodness gracious! Lightning presses.
Worldly wisdom. Banking systems.
Phosphorescence. None whatever.
Good beginning. This is funny.
Testing the instriments Philip was conquered
Love and integrity. Spare me your history.
Let us experiment. Notes on the editing.
Like you suggested. Here are the banners.
Not to my knowledge. Run for the cellar
Not that it mattered. Talking of wandering.
Wendy was scandalised. Going away.
Always ahead. Then I refuse.
Nothing at all. Open the door.
Maybe she had. Probably not.
Only a mouse. Say it again.
Billy was there. Under the desk.
Carrots and greens. Shirley declared.
That ruined me. Freddy Observed.
Tracy announced.

ENDNOTES

1. As discussed in (Kochanski, 2006), it is not obvious
to what extent people have accurate conscious access
to the process of speech perception and understanding.
For instance, several papers have raised the possibil-
ity (Dyde and Milner, 2002; Haffenden and Goodale,
1998; Agliotiet al., 1995) that visual processing for
perception is substantially different than processing for
action. If so, reported perceptions could disagree on
the actions we take in response to the same stimuli. If
a similar effect occurs in speech, our reports of what
we hear might not reflect our conversational behavior.
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Hickok and Poeppel (2000) argue for a similar distinc-
tion between tasks that require sub-lexical awareness
and those that do not.

2. Part of this data was intended for a similar finger-
tapping experiment, but we dropped its analysis when
we found that the finger-taps were too loud in the speech
channel. However, the tapping parts of the experiment
nicely serve the purpose of training the subjects to as-
sociate the beat with prominence.

3. One male was accidentally givenuuSuuSphrases in-
stead ofSuuS; that data was included in the analysis
as we did not find any strong differences between met-
rical patterns. We don’t include those phrases in the
appendix because they were only used once.

4. Unisyn is a software package for predicting pronunci-
ation in a variety of English dialects. It is based on a
lexicon and includes transformation rules.

5. This part of the data was designed to check
that the repetitive speech as not too different
from a more typical laboratory experiment. See
(Kochanski and Orphanidou, 2007) and the discussion
in §I.

6. Note that calling L(t) loudness as was done by
Kochanskiet al. (2005) is somewhat of a misnomer.
L(t) is closer to the sum of all the specific loudnesses
at each moment, to use Zwicker (1977)’s terminology.
Munson (1947) and Plomp and Bouman (1959) showed
that perceived loudness is an average of the specific
loudness over approximately a 250 ms interval, while
the Kochanskiet al.(2005) measure averages only over
a 25 ms (FWHM) window. AveragingL(t) over a
250 ms window should approximate perceived loud-
ness.

7. The convolutiona∗b is the integral
R

a(τ)b(t−τ)dτ. It
can be thought of as taking a time-seriesb, and filtering
it in a way specified by functiona. If this were a
perception experiment, this equation would correspond
to Munson (1947)’s sensation integral.

8. Recall that exp(i ·∆) = cos(∆)+ i · sin(∆), so that it is
periodic, not rapidly increasing as one would get by
taking exp() of a real argument. If one plots the real
and imaginary parts of exp(i · ∆), one finds that they
trace out a unit circle, centered at zero.

9. We rely on the fact that exp(i∆) = exp(i(∆ + 2π)) for
any∆.

10. We recognize thatf0 can induce the perception of
prominence, as shown by Gussenhovenet al. (1997);
Rietveld and Gussenhoven (1985); Terken (1991).
However, as shown in Kochanskiet al. (2005), f0
swings in speech are frequently not large enough to
induce a prominence judgment. Consequently,f0 is
potentially important to prominence, but apparently not
important in practice.

11. Unfortunately a direct comparison to the p-center loca-
tion is not practical in this experiment.
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