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Which acoustic properties of the speech signal differ between rhythynioeominent syllables and non-
prominent ones? A production experiment was conducted to identife thesustic properties. Subjects read
out repetitive text to a metronome, trying to match stressed syllables to ttsTHeaanalysis searched for the
function of the speech signal that best predicts the timing of the metrotickse The most important factor in
this function is found to be the contrast in loudness between a syllable areldgtsors. The prominence of a
syllable can be deduced from the specific loudness in an (approximaé&dyhillisecond window centered on
the syllable in question relative to an (approximately) 800 millisecond-widesstric window.

PACS numbers: 43.72.Ar, 43.71.Sy, 43.70.Fq
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that louder and longer syllables tend to be heard as prorinen

Most of these papers suffer from a common problem: the

I. INTRODUCTION task used to define prominence is highly artificial and unnat-
ural. Prominence was evaluated by a variant of the following

Patterns of prominence define the rhythmicity of speechexperimental procedure:
which is an important characteristic of stress-timed laggps,
English among them. The purpose of this study is to find
which acoustic properties of the speech signal mark rhythmi
prominence. We investigate this with a new production-dBase 2. Allow the subject (typically a linguist) to listen to the
experiment; it involves auditory perception only to theesxt utterance or parts thereof many times.
that subjects extract a beat from a metronome tick.

While a number of papers have studied acoustical correlates
of prominence, human perception of speech has played a cen-
tral part in most of them, with listeners being asked to idgnt Participants in a conversation normally don’t see a graghic
prominent units in speech. The prototypical experimends arrepresentation of the speech, and they hear each utterance
Fry (1955, 1958), who synthesized isolated disyllabic word only once. Further, they do not consciously classify each
and asked listeners to choose which syllable was stressesyllable as prominent or nédtnor is a mouse click the normal
(=~ prominent). These papers are mostly of historic interesbehavioral response to speech. Consequently, it is imutorta
because the synthesis may not have been very realistic and tto see if one would get similar results with a different task.
stimuli were very simple compared to natural speech. In our experiment, we employ a more natural approach by

Other workers (Beckman, 1986; Streefketlal, giving subjects a production rather than a perception fask.
1999; Breniertal, 2005; | Silipo and Greenberg, 2000; classic production experiment is Lieberman (1960), whdt bui
Kochanskiet al,, 2005) have studied more realistic speech,a machine classifier to study acoustic properties of promi-
some using actual conversations. These studies invesdigatnence. He made perceptual judgments unimportant by select-
the relative importance of a variety of acoustic factors toing sentences that had unambiguous prominence patterns, at
prominence. Streefkerkt al. (1999) tested several acoustic the cost of studying utterances that were presumably much
features such as duration, loudness, spectral slope ofl¥pwemore carefully articulated than normal speech. Ftal.
as well as mediarfip over a syllable, and the range ff over  (1995) is a noteworthy modern representative of such ex-
a syllable. They concluded that all but the spectral slogk haperiments. Rhythmic speech, often spoken to a metronome,
promise as predictors of prominence. has been extensively studied in relation to stress in speech

Brenieret al. (2005) tested 12 acoustic and lexical fea- production and perception (Fowler, 1979; Cummins and Port,
tures and found that the maximum intensity was the mosii998; Lehiste, 1973). Boutse al. (2000) is a recent pro-
effective for emphasis detection, followed by duration andduction experiment; they concluded that speakers use-inten
fo. Silipo and Greenberg (2000) found that a combinationsity to mark stress patterns, in agreement with the majority
of intensity and syllable duration was the best predictorof perception-based experiments. Our experiment is most
of their “prosodic stress” (prominence by our definition). closely related to Cooper and Allen (1977) who collect very
Kochanskiet al. (2005) tested syllable prominence in sevensimilar data however we use a different analysis to look at

the loudness contrasts in more detail. They focus on the

differences between normal subjects and stutterers; vkeabo

what aspects of the speech of normal speakers most acguratel
aElectronic address: greg.kochanski@phon.ox.ac.uk reflects the metronome rhythm.

1. Display the speech waveform arigl trace on a com-
puter monitor.

3. Have the subject find and mark any prominent syllables
on the computer screen.
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We ask subjects to read text to a metronome, matching their Next, a metronome was connected to an earphone, and
reading to the beat. Before the experimental part of the taslsubjects were asked to choose the two most comfortable rates
there is a training part which is intended to accustom the subat which they could read text with a strong metrical pattern.
jects to treating metronome ticks as proxies for prominenceTo pick a comfortable metronome rate, the metronome was
We then analyze the speech to find stable timing relatiosshipstarted and the subject was asked to read the poem again.
between acoustic properties and the metronome ticks. After a few lines, the subject was asked “faster, slower, or

One important feature of our work is that we use naiveis that OK?” If necessary, the metronome was adjusted by one
native speakers, rather than linguists. This reduces tke poclick (typically 4 beats per minute) and the process comtthu
sibility that the prominence marks may be influenced by theuntil the subject said “OK.” They were then asked to pick a
oretical expectations. No conscious judgments of proniaen second rate, either 4 beats faster or slower than the first one
are required and no visual cues are involved in this experiThey then read the poem at both rates, matching their reading
ment. This experiment provides a different experimenwlwi to the beats of the metronome.
of prominence, with different biases and limitations frdme t In the next tasks, subjects read 48 short paragraphs from
classical technique. which the phrases had been extracted, then read a randomized

One could argue that the task is not ideal in that the phrasdist of 264 phrases which included 5 repetitions each of the
must be spoken repetitively, which brings in the risk thatabove set of phras&s.
repetitive speech is different from more natural speeclwHo  In the final set of tasks, subjects were presented with the
ever, we have checked this possible problem in other, morabove set of phrases, from which 4 groups of 12 were ran-
recent work |(Kochanski and Orphanidou, 2007). We founddomly selected, with the groups balanced by metrical patter
that spectral differences between repetitive speech aaetbp Subjects were asked to read out 10 consecutive repetitfons o
from a list of randomized phrases are not large, so one wouldach phrase. The repetitive task was intended to allow the
expect other aspects of speech, like prominence, to be simsubject to settle upon the easiest (perhaps the most natural
larly unaffected. metrical pattern. The number of repetitions was intended to

Work has been published in the related field of mu-allow subjects to conveniently say them all in one breatle Th
sic analysis, where algorithms have been designed to efirst group of 12 was simply read out. For the second group,
tract the beat and/or metrical pattern of music using metrothe subject was asked to read and simultaneously “Tap your
nomic stimulation. See Scheirer (1998), Klapetral. (2006),  finger to what you consider a stressed syllable.”

Todd and Brown (1996), Large and Palmer (2002) and refer- We analyzed the data from the third and fourth groups of
ences therein. The techniques differ from ours for variousl2 phrase, which were read out to metronome ticks. One
reasons, for instance, unlike speech, many musical soundgoup was read at each of the two rates that the subjects
have sharp onsets (e.g. drums, pianos). Further, algaithnthose earlier. Subjects were instructed to “Read, trying to
can exploit the fact that the beat of music is very nearlyfollow the beat of the metronome.” The metronome rates
periodic; they can keep long-term correlations and use themvere 86+ 7 beats per minute (01+ 0.06 s intervals between
to help predict the next beat. Conversely, our algorithm isheats), and the mean length of 10 repetitions of the phrase wa
designed to be applicable to normal speech, which is not ver§3.4+2.4 s. (In this paper, means and standard deviations are
periodic. It therefore operates on a small window of timehwi given in the formu+ o whereg is the standard deviation of the
no explicit memory of previous prominences. distribution, not the standard error of the mean.) Thereewer
0.91+0.15 metronome ticks per stressed syllable (assuming
stress as predicted by Unisyn).
Il. EXPERIMENTAL METHODS Participants were linguistically naive speakers of Stashda
Southern British English. All were either undergraduate or

The experiment involved several tasks and lasted for apgraduate students at Oxford University. Five females and fo
proximately 1 hour; only some of the later tasks are analyzedmales were recruited by mailing list advertisements.

The earlier tasks were intended to train the subjects toeutt  Each subject was recorded with an electret microphone po-
metronome beat on metrically prominent syllabtes. sitioned approximately 10 cm from his/her mouth, to the side

A set of 53 short phrases (4-6 syllables) were central t@f the breath stream. Recordings were taken in a acousticall
the experiment (see Appendix B for a list). The phrases hathsulated recording booth. The audio signals were sampled a
4 different metrical patterns: 12 GuSy 12 of uSu$ 13 of 32 kHz with 16 bit resolution.

SuuSupand 16 ofSuuSwhereS denotes a stressed syllable  Metronome ticks were fed to the subjects through an “ear-

andu unstressed. The phrases were selected from Projectbud” style earphone on the opposite side from the microphone
Gutenberg (Hart and volunteers, 2006), based on patterns tiat recorded their speech. It was adjusted to a comfortable
stress predicted by Unisyn (Fitt and Isard, 1999; Fitt, a@bz loudness level for each subject. The metronome ticks were
Phrases were selected for broad coverage of phonemes, mirecorded on one channel of a stereo recording and cannot
imal repetition of words, and a lack of obsolete and unusuabe heard in the other channel which carries the microphone
vocabulary. They were reviewed to confirm that the Unisynsignal.

stress assignments led to a reasonable reading. All phrasesThe start and end points of the speech were automatically
have at least one polysyllabic word and they have an averaggetermined by an algorithm that finds the borders of a loud

of 1.4 monosyllabic words. interval, surrounded by quiet regions on both edges. It is

As a warm-up, subjects read out a poem (Nesbitt, 2001a modified version of techniques used iin (Kocharmgll.,

“My Excuse”) and then read it out again while tapping their2005). All endpoints were manually checked at the same time
finger to what they considered to be stressed syllables. we checked the tick marks. Fewer than 10% were adjusted.
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We choose a convolution kerndl, which has a zero mean
and is the difference between two Gaussians:

\ | K(T) _ ef(rfacr)z/Z(bcr)2 _ besz/Zoz, (2)

whereTt is the time delayg controls the overall width of the
kernel,b (which is typically less than 1) is the relative width
of the positive Gaussian, aralcontrols where the positive
Gaussian sits. 1& =0, K is symmetric in time and corre-
sponds to the difference between a syllable and both of its
neighbors; ifa # 0, then the contrast with either the left or the
0 right neighbor is more important. One can interpreds the
width of the region that is used to normalize the local lowsine
A > 1 5 ; 5 5 information.
time (arbitrary units) Figure 1 shows the range of shapes #at) can take. The
top two would respond best to step-wise increases -ig,

FIG. 1. Possible shapes for the convolution keriéfr). More  the next down responds to the contrast of a syllable with the
possible shapes can be obtained by reversing the time (delay) axis pearest syllable on each side. The next two show contrasts
the vertical axis. against broader regions than the nearest neighbor(s) hand t
lowest curve shows a kernel that responds to a local minimum
inL-g.

In the next step, we consider regions whef® is positive
and take the time of the largest value in each regtfi¥}.

: : he final set of syllable timeg;, is then computed by drop-
In the analysis, we search for the function of the speech dat .
Y D éng any values of™® where eithex(t"®) < r - x(t"%") or

that is best at predicting the metronome ticks. The fundon
y J g™ < r-x(t7F). In other words, one drofisvalues whose

expressed as a simple algorithm that has several adjusta . ) ;

parameters. It takes a waveform and yields a set of predi@S Is substantially smalller than their ne|gh.bors. The process
; : ds controlled by the adjustable parameterf r < 1 all the
axima are preserved, whilerifis close to 1 only the largest

ew maxima in each utterance survive.

K: convolution kernel
N W
i %

IIl. ANALYSIS TECHNIQUES

adjust the parameters to maximize that accuracy. We ca
then interpret the parameters to see how the subjects expre
rhythmical prominence.

B. Acoustic Properties Beyond Loudness
A. The Algorithm

As there is some evidence that acoustic properties other

. . thanL contribute to prominence judgments, we investigated
The algorithm computes a signal from the speech wave; P — g

form, convolves the signal with a kernel, and picks maxima ofa set of alternatives fagin Equation 1. They were:
the result. Large maxima become predictions of metronome 1. g; = 1. The resulting timing estimates are based only
ticks. The signal we use is related to the perceived loudness  onL.
of the speech, but we also try modifications that includerinfo
mation from the pitch of the speech, voicing, and the overall 2. .
slope of the local speech spectrum.
Itis motivated by perception experiments (Kocharetial,,

2005) showing that prominent syllables are typically laude fo(t)

The algorithm begins by computing a time series of the spe-
cific loudness,L(t), from Kochanskkt al. (2005’}—5“, derived
originally from Stevens (1971). This specific loudness enth
convolved with a kerneK to yield x(t) as an intermediate
result. We usé

x=Kx(L-g). 1)

Other acoustic properties of the speech will be included via
g, and will be described in more detail in §I11.B. We will test
different values fog, beginning withg = 1, then functions of

fo, voicing periodicity, and spectral slope.

We chose a product form in Equation 1 to express the
fact that the other acoustic parameters become irrelevant a
L approaches zero. For instance, if the signal is quiet enough
relative to near-by regions, the pitch of the quiet regiofi wi
be perceptually unimportant.

Golt) = 140 V(1) (<f0>1) @3)

where fp(t) is the speech fundamental frequency, as
determined by theget f0 program from the ESPS
package (Entropic Corp.)V(t) is 1 or 0O, indicating
whether or not the speech is voiced (it also is produced
by get _f0), and (fp) is the averagdy over the voiced
parts of the utterance. Thus,rf> 0, voiced sounds
with relatively high fo are emphasized, while if < 0,
voiced sounds with relatively lovfp would be treated

as louder.

fo(t)
Th)

with variables as above. Thus,gf> 0, voiced sounds
with either high or lowfy are emphasized relative to

ga(t) =1+-V(t)- ; 4)
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those withfp near average. Conversely(ik 0, voiced
sounds with near-averadge or unvoiced sounds would 2L
be treated as more important.

4. . a(t) = 1—aA(t), (®)

where A(t) is the aperiodicity measure from
Kochanskiet al. (2005). (Related measures have
been developed by de Krom, 1993 and Boersma,

Delta (radians)
» <

1993.) Vowels have small aperiodicities (typically -6~ o
less than (), while fricatives have aperiodicities near AR AN
1, soa controls how important fricatives (and other 8- Voo
consonants) are in the expression of prominence. ‘ ‘ \ J ‘ ‘ J

5 os(t) = 1— yS(t) (6) Time (seconds) 10 12 14 16

whereSis a measure of the average slope of the speechlG. 2. The phasa(t) for a typical utterance plotted against time.
spectrum. Itis related to the ratio of power below 1 kHz The algorithm missed a prediction n¢ar 10.8 s, then behaved well

to the power above 1 kHz, and is described in detail infor the rest of the utterance (dashed line). The solid line shibws
AppendixX A. Related measures have been developed b\grapp.ed into the range from Tt to Tt to simulate the behavior of

Heldner (2001); Sluijter and van Heuven (1996); and quation 9.

references therein.

We defineS so that its histogram is approximately

centered around zero, and positi@ecorresponds to sensitive to missed events. One missing or extra element in
excess high-frequency power. Consequently, a positivd would change) by 2 for the remainder of the utterance.

y would cause sounds with more high frequency powerThus a single missed prediction could dramatically inceeas
(like fricatives and harshly spoken vowels) to be treatedthe variance, as can be seen from the dashed line of Figure 2.
as louder; on the other hand, sounds like /m/ and gently Instead, we compL@e

spoken vowels would be treated as emphasizgeid.

6. . Os(t) = 02(t) - 9a(t) - g5(t) (7) I = %/exp(i -A(t)) - dt, C)

We conduct an analysis wheges the product of EqUa-  \here the integral is taken over the part of the utterance
tions[ 3,5 and 6. This allowed for prominence to behareys andg are both definedt. is the integral’s length (in
determ!ned by an arbitrary combination of voicing ir- seconds).

regularity, spectral slope arfg. If the the times inT match the metronome ticks so tht)

is constant, then the exponential will be a complex number
of constant phase and unit magnitude, and the magnitutle of
will be unity. This gives the largest possible magnitudelfor
We based our analysis on the metaphor of coupled oscillaggyurgfgztﬂ;igv 'gnrg(:ﬁge Eéi’&iﬁﬁﬁ&ﬁﬂ%ﬁﬁis
tors (Large and Kolen, 1994; Saltzman and Byrd, 2000; Port(,)cgur relative tor ' P
2003). Following that metaphor, we constructed a time serie ’

of phase for both the tick sequence and for the set of syIIabI(ta Plutt.ingA(t_)t'inth)[ ag exppnential drggkes the anda'lyts.is rella-
times T produced by the algorithm. The phase is @7, 2 UVEY INSENSIUVE 10 dropping Or adding oné prediction. in

41,. .. at successive ticks, linearly increasing in betwedre T either case, the argument to the exponential changesnby 2
metronome phase(t) is then a linear function of time, with radians during the gap, but the VaIL.Je of the exponentialgsvin
a slope equal tor2divided by the interval. A similar phase around and returns to the value it had before the@gap.
function, calledy(t), is defined fromT; it increases by £ sucha case | would be reduced from 1 to aboutXfor our

for each element of . It is defined between the first and last condmons. The SOI.'d line in Figure 2 shows the effect of the
elements off that fall within the speech. exponential, wrapping together values/\othat differ by 2t

If the algorithm produced a periodic series of predictions Ve can interpret in two related ways. Starting with=1
in T, theny(t) would also be a straight line. For a regular as |r_np_ly|ng perfect cor_rel_at|0rh,|s redu_ced whenever there is
pattern with ticks and predictions coming at the same aeerag? MiSSINg or extra prediction. Alternatively, we note thaew

rate, the slopes apandy will be equal, and the difference, ~ va'(4) is much less than 1,~ 1 —var(A), so that a decrease
in | can be interpreted as an increase in the variandeasfd

A(t) = o(t) — Y(t), (8)  thusasincreased timing errors between the ticksTand
Now we can computé for an utterance, given the param-
will be a constant. At each momer,can be interpreted as eters that control the algorithm. Then, for a corpus, we can
a phase difference between the stream of ticks and the streazpmpute the average of the magnitudd dfe. (|I|}. (|l|) is
of predictions inT . thus a function of the algorithm’s parameters. It is an aler-
One could use the variance Aft) as a measure of how figure of merit for how well the algorithm’s predictions mhtc
well the two sequences are related, but it would be extremelthe ticks.

C. Optimizing the Parameters

The beat of speech 4



We then find the optimal parameters for the algorithm by
evaluating (|I|) for 90,000 randomly chosen combinations 06 0572 057 0572
of parameters and taking the one that produces the largest %
absolute value. This simple technique for finding the best pa
rameters was chosen becalsand thus(|l|), is a discontin- - =
uous function of the algorithm’s parameters. (More effitien 20
optimization algorithms are not applicable, as they tyibica Z
assume that the function to be optimized is continuous, and =
often that it has continuous first derivatives.) §
By optimizing in this way, we are explicitly searching for
acoustic properties that repeat with the same periodigty a
the metronome ticks. The resulting parameters will be most
representative of those utterances with one nominallg st

syllable per metronome tick.

05

Average of abs(I)

D. Bootstrap Resampling and Confidence Intervals 0.288
0.3 _E

The above technique is good for finding the parameters that
give the best match to the data but it needs to be extended to Scrambled

find error bars and confidence intervals. For this purpose, we
use a Bootstrap Resampling scheme (Davison and Hinkley;ig. 3. values if|l|, averaged over the corpus. The lower left

1997)-. We compute 3400 artificial corpora, COY)SUUCtEd bymeasurement is the baseline, where acoustic data are shuffled with
choosing utterances from the real corpus, sampling randomlrespect to ticks. Other conditions correspond to the six cases of
with replacement. In each artificial corpus, most utterance§Ill.B, in order: running the analysis only dn (g = g;), andL

appear once, but some do not appear at all and some appehanced by other acoustical propertigs-(z..6)-

several times. The same analysis procedure can then re-

peated for each artificial corpus, leading to optimal patanse
In practice, we use a mathematically equivalent . .
P y 9 The start and end points of the speech were automatically

for each.
but faster technique. We compute the valued br each éietermined by an algorithm that finds the borders of a loud
terval, surrounded by quiet regions on both edges. It is

combination of utterance and parameters, then the Boptstr
resampling is implemented as a weighted average in the conf? dified . f techni din (Kochaesl
putation of (|1]). (Each weight is just equal to the number of a modiied version ot techniques used in tfocha v
. 2005). All endpoints were manually checked at the same time
times that datum was chosen.) ; ;
) o . we checked the tick marks. Fewer than 10% were adjusted. In
The resulting distribution of optimal parameters then ap- . ! "
. s . total, approximately 3000 syllables (and tick positiongrev
proximates what one would get by replicating the entire ex .
: . . examined.
periment, with new subjects drawn from the same pool. So,
if one wishes to estimate the probability that some paramete
p exceeds a threshol&, one can simply count the fraction
of artificial corpora where the optimal > X. Thus, we use
Bootstrap resampling to generate confidence intervald for

and the algorithm’s parameters.

IV. RESULTS AND DISCUSSION

A. Relevant acoustic measures

We first confirm that the algorithm performs better when
given acoustic data than it would without any data. This
E. Timing Data is the basic check that it can usefully predict anything. To

do this, we first perform the analysis with= 1 and find

We processed both the metronome and speech channeli|) =0.572+0.02 . Then, we repeat the analysis, except we
Its use on the speechshuffle the data so that we use ticks from one utterance and

with the same algorithm [(8IILA).
channel is a major focus of this paper; we used it to find theacoustic data from another. Comparing, the shuffled results
metronome ticks merely out of convenience. The metronomere substantially poorer than the actual analysis, With
data is short bursts of oscillation amid silence, and alraogt  only 0.290+ 0.013. The difference between normal and shuf-
algorithm will be equally successful at finding the ticks. fled analyses is statistically significantzt 9 or P < 107°.
Thus, based oh, metronome ticks can be predicted at much

For the metronome channel, rather than computir{gee
8Il.A), we used the RMS power above 100 Hz in the better than chance levels. All choicesgathow similarly large

metronome output, averaged over a 15 ms window. Thisind significant changes.

signal was then used in Equatioh 1 in placelofo yield Next, we investigate which acoustic properties carry the

an initial set of tick times. The algorithm’s parameters ever most information, as shown by an improvement in the tick
prediction. Can adding other information toimprove the

set by informal experimenttg =1, a=0, c = 0.110 s,
bo = 0.015 s, and = 0.5. The result was inspected and no tick prediction? To do this, we insert different choicesgof
from §lIl.BJinto Equation 1 and see if|/l|) increases. The

errors were found.
The beat of speech 5



results are displayed in Figure 3. Changgim bring in other
pay gure 9 g TABLE |. Parameters that yield the large§t|). The analysis

acgustlc da’f{?} glvesllltt_le °.r no |m_provlement oger 1. t operates o only (g = 1). The right column shows the distribution
ecause the analysis wiff= gs Involves more parameters, .of values that were tested in the optimization procedure (90,000

it might be argued that we do not sample densely enough i@3mpjes), and the center column shows the distribution of optimal
the higher-dimensional parameter space to find the maximunygjues that were found (3400 bootstrap corpora).

While an exhaustive test is not practical, we did check fag thi
possibility by recomputing thg = gs case with 10 times as

: Param- . —
many samples (9L0° sets of parameters). This makes only a oter | OPtimal Value | Distribution _of
modest changet|l|) increases by just 0.01. Since the change Test d Evaluations:
is small, it suggests that we have indeed sampled parameters meantstdev

o| 0.1764+0.028 |Gaussian 19+ 0.07

close to the maximum even in the higher dimensianal gg !
parameter space, and that little further increase wouldkbe e a] —0.01+003 |Gaussian@0.4
pected even with more samples. 0.83+0.07 |Uniform on [0.5,1]; thus

(=2

. . . . 0.75+0.16
F!gure[:% shows thdt is an important correlate of the ticks, T 0.0420.04 [Uniform on [0,0.4] thus
but it would not exclude the possibility thgis of comparable 0204012

importance td., if gandL marked the same locations. We can
check that by looking at the distribution @f y,  andZ in suit-
able optimizations. If an acoustic measurement (&pwere
important, we would expect that the distributions of (e.g.)
(which indicates changes ify - see section IlIB) would be
narrow. Assume, for instance, that ticks are marked by hig
fo. In that case, we would expect a positigeso that the
contributions offg andL would reinforce each other. Running
the algorithm with negativg would cause the contributions
to cancel.L would then cancel the main effect &f and vice
versa, leaving only the fluctuations; one would not then ekpe
the peaks ok to be correlated with either metronome ticks,
or fo.

Similarly, if fop andL were anti-correlated, the same logic
would apply andy would be negative. (Ify were near zero, it
would imply that the best tick predictions are done withaag u
of fg, which contradicts the hypothesis thigtis important.)

APPENDIX A: itis just 0.03.

The straightforward interpretation of this is just that ¢ipe-
r(‘:iﬁc loudnesses at frequencies over 1 kHz go up more, on the
beat, than the specific loudnesses at lower frequencieh Suc
a shift in the spectral balance for vowels was measured by
Glave and Rietveld (1975) and Gauffin and Sundberg (1989).

This weak correlation of a spectral slope measure with
metronome ticks is in general agreement with the results of
Kochanskiet al. (2005), though the spectral slope compu-
tations differ. A comparison with Sluijter and van Heuven
(1996) is not simple; They analyzed dependences on focus
(i.e. accent) and stress separately, while we effectiveip-c
pare+focus;stress with the neighboring syllables which are
either —focus or —stress.| Heldner (2001) showed that his
Either way, if f, were important, we would expect that measure, called “spectral emphasis” is a good predictoc-of a

would have a reasonably narrow distribution, on one side oFem: Our results do noF support th'.s’ but are r)ot mqomﬂ,ste
the other of zero. A broad distribution gf roughly centered as his spectral emphasis measure is substantially differen
on zero, is thus evidence that the algorithm gets no useful

information from fy via Equatiori 3. The same logic applies

toa,y, andd. B. How localized is prominence?
For a, n, and  the distribution is broad and overlaps
zero. The optimal values af for the g = g analysis is Since the primary acoustic marker of rhythmical promi-

0+0.5. This provides additional evidence thiatdoes not nence isL, we now focus on that casg & 1) and describe
usefully contribute to the prediction of metronome ticke.(i the remaining parameters. Three parametar$,(o) define
rhythmic prominence? since the distribution includes=0.  the shape of the convolution kerri€) and one1() controls the
The deviation offy from the averageg(= gs) is also unim-  rejection of small peaks. Tablé | shows optimal parameters.
portant, with{ = 0.240.9: subjects do not reliably mark The rightmost column shows the distribution of parameters w
prominent syllables by pushinfy away from the utterance sampled; in each case, the distribution of optimal pararaete
mean. Likewise, the aperiodicity is not important; optimal can be seen to be narrow and not too far off center, so our

oa=-03+0.7. choice of sampling distribution is not seriously constiragn
On the other hand, the spectral slope has some relationshipe distribution of optimal parameters.
to the ticks. The distribution of optimal valuesjis- 0.6+0.3, We also check that our analysis is not simply detecting

so that distribution overlaps zero only slightly: just 1%tloé  the gap between repetitions. This is confirmed by noting
sets of optimal parameters are negative. So, syllablesen ttithat the median spacings between predictiond i(0.67 s
beat have some excess high frequency power. However, it #or metronome forg = 1) is substantially smaller than the
not a large effect; we estimate thgf(t) gives the same effect median length of a repetition (1.30 s). Thus, we are thus not
as a 20% change ih (roughly equivalent to a 5 dB change locked onto a single prediction per repetition; in fact, we a
in acoustic power). (Perceptually, a twenty percent changeseeing close to one prediction per stress, or two predition
in loudness is not large.) This is consistent with our resultper repetition. Also, we note that the average integral over
that (|1|) does not substantially increase when spectral slopeSuSpatterns is essentially the same as thaSoeSpatterns
information is added ta (Fig.[3). The small size of the effect (0.549 vs. 0.558, not significantly different) while we migh
is further confirmed by computing the correlation coeffitien expect a substantial difference if predictions were tiethto
betweenL(t) andS(t), the spectral slope measure defined inbeginning of each repetition but the metronome ticks foldw
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width of the kernel are in Tablg I. The full-width at half-
maximum for the highest peak inis 0.18440.008 s, and the
magnitude of the time interval between the most positive and
most negative peaks is31+ 0.04 s for theg = 1 analysis,
so the entire window of relevant speech data spans approx-
imately 800 milliseconds. The numbers are similar for the
g = gs analysis, 0183+ 0.01 for the FWHM and 26+ 0.01
for the peak spacing.

The positive peaks of the kernel are as wide or wider than a
typical vowel, and about two-thirds of the mean syllablecspa

‘ ‘ ‘ ] ing, 0.27 s. The full extent of the kernel, given bg 2 0.34 s,

e 5 lime (5), retative to peak e is wider than the mean syllable spacing, and the time interva
between the positive and negative peaks is just about equal

FIG. 4. Convolution kernelsK (), that are optimal for bootstrap to the mean syllable spacing. Ticks are thus correlated with

samples of the data. The maxima of the curves are aligned dh€ properties of a region larger than a single syllable. Our
t = 0. (These kernels maximizgl|), and haven, y, andn zero,  analysis is consistent with the hypothesis that ticks detae

corresponding tg = 1.) to a large loudness contrast between a syllable and itssteare
neighbor(s).

This conclusion is consistent with findings by
Kochanskiet al. (2005), who show an (approximately
symmetric) loudness pattern around syllables that were
judged to be prominent. The loudness pattern observed there
Full width at was somewhat narrower, as might be expected, given the
<~ faster speech in that study. There are some differences in
detail, however.| Kochanski al. (2005) reported small but
significant correlations ofg and A with prominence; but we
see none here. The difference may be due to the different
tasks (e.g. production vs. perception).

An interesting feature of the these results is that the al-
gorithm unifies loudness and duration changes into a single

x(t), arbitrary units

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

x(t), arbitrary units

-0.4

-0.6

085 05

Time interval between most

positve and most negative peaks time seriesx(t). For vowel durations shorter tha’s positive

03 L0 peak, an increase in duration has much the same effect as an
increase in loudness; the convolution can be approximated
FIG. 5. Optimal bootstrap samples of the convolution kerik¢t) @S an mtegral_ of loudness over about 0.2 s. It can then be
for the g = gg analysis. The maxima of the curves are aligned atfurther approximated as the vowel's loudness times the owe
t = 0. (These kernels maximizgl|), and allowa, y, andn to be  duration. Thus, peaks aft) and consequently predictions in
nonzero.) T will tend to occur on longer syllables, rather than shorter
ones.
An analogous effect, but occuring in speech perception
rather than production, can be found in the psychophysics
the stresses. literature.  Munson (1947) showed that perceived loud-
The optimal values af are small, so that the last step of the ness is a generally increasing function of duration, and
algorithm is almost moot; it rejects very few candidatese Th Plomp and Bouman (1959) modeled the effect as convolution
other three parameters are closely coupled, and can mest ea the specific loudness with a kernel. They obtained equiv-
ily be interpreted visually, by plotting (t). Figure 4 shows alent widths of their kernel near 0.25 s. This is sufficiently
a set of convolution kernels that are computed from sets oflose to our results to support the idea that speech pramfucti
(a, b, 0) which are optimal parameters for bootstrap corporashould be matched to speech perception; the peak value of
The curves show exampleskoft) that are consistent with the our x(t) may simply be related to the perceived loudness of
data, analyzed assumigg= 1. Since the analysis procedure the syllable.
is invariant with respect to shifts of the peaksxfwe can Our results are similar to those of Beckman (1986), who
align the peaks oK for clarity without changing(|l). The  found strong correlations of prominence with a similar com-
shape ofK is important because it tells us which contrastspination of amplitude and duration, and Silipo and Greegber
are important for predicting a tick. In this case, the cositra (1999, 2000), who had the best success at predicting promi-
is approximately symmetrical: the syllables preceding anchence with a product of syllable-averaged amplitude and
following the metronome tick are equally quiet. vowel duration. It also parallels (on the production side) a
Figure 5 shows convolution kernels that are optimal for theleast one claim of Turk and Sawusch (1996) — viz that dura-
(1), 9= g analysis. The analysis is entirely consistent withtion and loudness are perceived together as a single percept
Figure 4, but with somewhat larger scatter as we are fitting a This agreement with other work is perhaps remarkable,
more complex model to the data. given the differences in experimental technique. Not least
The widths and relative spacings of the peaks are remarkbecause the experiments mentioned above involve perdeptua
ably consistent. Values fay which is related to the overall judgments (e.g. which syllables are prominent), while our

0.0
Time (s), relative to peak
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05 0.0 05 10 15 2.0 FIG. 7. Phase histogram4 (relative to the phase df for three
Time (s) different subjects. The subjects shown have (reading from top to
bottom, in the center) the largest, median, and smallest value of
FIG. 6. Theoretical loudness contours based on this work for<|”>' The subfigyre shows values ¢fi|) for each subjeqt, with .
prominences that are (top) on adjacent syllables, (middle) separatéldStandarq deviation error ba_rs on_the average. (The honzontal axis
by one and (bottom) by two syllables. The dashed line is a loudnes® the subfigure has no meaning — it just separates subjects.)
reference.

plest foot is 2-syllable and this potentially might help kip

experiment is strictly a production experiment. the cross-linguistically common preference for an alténga
metrical pattern.

C. Alternating Metrical Patterns and Implications for Phono logy D. Performance variation between subjects

This result that prominence is expressed by a contrast be- sypjects differ substantially in terms of how consistently
tween a syllable and its neighbors is interesting becamsayt  they follow the metronome. This performance variability
provide a reductionist expllanation of the alternating metr s seen in Figure 7, which shows the phase histograms for
patterns that are common in many languages. three speakers. Histograms for the other speakers are simi-

Consider a loudness pattern like Figure 4, and place it omar, displaying the same properties: largé|) is correlated
a uniform background corresponding to the average loudnesgith a tall, narrow peak and a low background level, while
of speech. For the sake of argument, suppose that loudnesgall (|I|) implies a short broad peak sitting on a higher
patterns of different syllables add. Then, Figufe 6 shows th background.
resulting loudness patterns for prominences that are aegghr From subject to subject{|I|) varies from 0.13 to 0.90,
by 1,2, and 3 syllables. while the uncertainty in each subject's mean due to intra-

One can see that the loudness patterns interfere with orgubject variation is just 0.05. This is a large range, as the
another when the prominent syllables are adjacent, and thgossible range of|l|) is just from O to 1.
resulting loudness peaks are then not as dramatic as when theANOVA rejects the hypothesis that the subject means are
syllables are farther apart. If, hypothetically, the liehad a  equal withP < 107® (F(9,214) = 7.5). Some subjects are
loudness threshold for the perception of prominence, tbe ca therefore speaking reliably along with the metronome, &hil
of adjacent syllables would not be perceived as prominent. the speech of some others has little consistent relatiprishi

To make the adjacent case appear prominent, the speakifie ticks. By observation, the subjects with the lower value
would have to make those syllables unusually loud, and/or tef (|||} show a mixture of two problems: irregular pauses that
push the syllables farther apart so that the loudness patterlead to jumps i\, and speech that is simply not synchronized
would not interfere so strongly. We suggest that speakerwith the metronome rate, leading to a gradual driffin
may avoid this case because of the extra effort and complex- For instance, if we select utterances that were spoken
ity needed to ensure that a listener will perceive the correcwith approximately 1 tick per stressed syllable (i.e. 19-21
prominences. Over time, this avoidance may become ermetronome ticks within the 10 repetitions or 0.95-1.054gick
shrined in phonological rules that reduce the number of adper stressed syllable), we computg|) = 0.69+ 0.28 for
jacent stresses. If speakers avoid 1-syllable feet, thesimax  those utterances & 119). This contrasts sharply witl |) =

The beat of speech 8



0.25+ 0.2 for utterances which are apparently unsynchro-
nized with the metronome, having 0.65-0.85 ticks per stress
(n=44). The three subjects who have the largest numb
of these unsynchronized utterances are also the threecstibjes
with the smallest values dfl |) . 8
Because of the large range of subject performance, and lys-
cause it can be automated, this task may be useful as a measgire
of the ability to process metrical patterns. One possibfgiap
cation is a evaluation tool for stuttering (e.g. Bouts¢al,,
2000 and Cooper and Allen, 1977, showed that stutterers had
much larger timing variance in repetitive speech than nbrma
subjects). The wide range of inter-subject performancas th
Figure 7) parallels the results of
Cooper and Allen (1977) for normal subjects, who found that
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some subjects had timing variances roughly ten times largeriG. 8. Phase histogram) for a typical speaker (outline) and

than others.

E. Analysis of high-performing subjects

the histogram ofA relative to the average phase of each utterance
(filled). The peak of the dashed histogram shows the typical phase
relationship between metronome ticks and the algorithm’s predic-
tions for that subject. The width of the histograms show timing
inconsistencies between the subject’s speech and the metronome.

Our analysis is designed on the assumption that metronome
ticks are proxies for prominence. But, ticks are clearly not

perfect proxies, especially for some subjects. This raiseshown in Figuré 5; neithew, a, b, or r show changes larger

the possibility that our results are affected by utterarnibas

than the error bars shown in Table I. This supports our use of

are UnsynChronized with the metronome or that have Othqlhe metronome tick as a proxy for rhythm|c prominences_

synchronizations (e.g. two ticks per prominence).

The majority of the utterances were spoken with approx-
imately a 1:1 ratio between metronome ticks and nominak, phase variation between utterances
stresses: 56% of the utterances contained 19-21 metronome

ticks for their 20 nominally stressed syllables. A total 824

The analysis so far only considers how stable the predic-

were near other small-integer ratios that might suggest diftions () are, in relation to the ticks. Any uniform phase
ferent patterns of synchronization: 5% contained 9-11stick shift between the ticks an@l will just change the phase of
(near a 1:2 ratio), 11% contained 14-16 (near a 2:3 ratio, but but not its magnitude, sp| and (|I|) are insensitive to the
informal investigation shows that many of these utteranceaverage phase relation within an utterance. Our analysis es
have no obvious synchronization), 1% contained 29-31 (3:2gentially minimizes the variance of the difference betwien
and 1% contained 3941 ticks (2:1). The ratios of the remainpredicted and actual tick positions. Thus, our analysiedif

ing 26% do not suggest synchronization between the speedtom Allen (1972), who assumes that the moment when the

and the metronome.

tick happens is the critical part of the syllable.

To check that possibility, we repeated our analysis on the However, because the optimahappens to be symmetrical

subjects that gave us the five largest valueg|bfy. These

and fairly compact, we can use it to identify the point in each

subjects generally produced utterances that are well sgach phrase where(t) is maximal. The loudness contour in a
nized, with one prominence per metronome tick, and thus areegion around this point gives the most consistent premficti
particularly well adapted to our analysis. By comparing theof the metronome ticks. We computed this fpe= 1 and
analysis on this subset to our main results (§IV.A), we caroptimized parameters; peaks %(t) thus correspond fairly

check that our results are robust.
As expected, the value dfl
statistically indistinguishable from the shuffled anaty&r
the full data set. Also, as expected, the values forghe;
analyses have increased: for theanalysis,l| has increased
from 0.57240.02 to Q739+ 0.02. Even so, there are no
differences among the varioll$ values for theg; ¢ analyses

) for the shuffled analysis is

accurately to peaks in(t).

Figure[ 8 shows the histogram aAffor all utterances pro-
duced by one subject. It also displays the histogran of
relative to the phase dffor the corresponding utterance. We
display data from the subject who had the median value of
(|I]). The histogram of relative phase is noticeably narrower
and taller, as might be expected, indicating that diffeteter-

that are larger than the corresponding standard deviationances have somewhat different alignments between thetspeec

This supports our contention that the other acoustic ptigser
are not very important.

and the metronome.
For this subject, the peak of the histogram (outline) is

Likewise, a, n, and( still have distributions that strongly not at zero, indicating that the peak xft) is not aligned

overlap zero, providing further confirmation thigtdoes not
play a role in the senses of Equations 3 and 4, andAftat

with the metronome ticks, but that the metronome ticks occur
somewhat before the peaksdf). In other words, this subject

is likewise unimportant. The spectral slope remains weaklyspeaks with the ticks early in the syllable, before the véwvel
important, with just 4% of the optimal parameter sets havingoudness peak. However, subjects differ in their averaige-al

y<O.

The shapes ok do not change substantially from those

ment.
Figure/ 9 shows a vector plot of the phases per utterance,

The beat of speech 9
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either side of the beat, at the speech rates we studied.

The critical factor appears to be the average loudness over
an approximately 360 millisecond interval, so that as the
vowel is shortened below 200-300 milliseconds, the dumatio
reduction will play the same role as a reduction in loudness.
Other acoustical properties such fasare not strongly corre-
lated with the beat; one exception is that on average, speake
produce somewhat more high frequency power on the beat
than off.

We suggest that this preference for loudness contrasts as
a marker of the beat may provide a partial explanation for
the relative rarity of adjacent, prominent syllables. Wegeno
also that the width of the region over which prominence is
expressed is well matched to human auditory perception, as
might be expected.

We conducted a production experiment that had minimal
involvement of speech perception, in contrast to much prior
work on prominence. Despite that our results are in gen-
eral agreement with prior experiments. Prominence seems a
broadly useful idea, one that is shared both by linguists and
naive speakers of English, and one that has a straightfdrwar
relationship to measureable acoustic quantities.

FIG. 9. The figure shows the phase relationship between the
metronome ticks and peaks aft) (loudness, loosely speaking).

Each utterance (i.e. 10 repetitions of one text by one speaker) {gcknowledgments

represented by a dot at the (complex) valuel pfwith the real

part on the horizontal axis and the imaginary part on the vertical _WWe thank Burton Rosner for discussions and comments and

axis. The distance from the origin is thus proportionalllofor

‘Oiwi Parker Jones for comments. This research was funded

that utterance. Dots near the origin represent utterances that dlay the UK’s Economic and Social Research Council via grant
not have a consistent phase relationship between loudness and tRES-000-23-1094.

metronome; dots on the unit circle would have a perfectly consistent
phase relationship. The angle of the point, when viewed from the
origin matches the phase of and dots just to the right of the
origin come from utterances where the pealk(t) is aligned with

the metronome ticks. Dashed circles represent the average of each
subject’s utterances.

for all subjects. The phases are distributed around zero,
indicating that on average, subjects align the peaks(of
(and thusL(t)) with the metronome ticks. If we wished to
discuss a “pr(oduction)-center” in analogy to Allen (1932)
p(erceptual)-centers, the pr-center appears to be neaykhe
lable’s peak inL: the mean phase of the peak ist1®}
degrees before the tick. The concept of “pr-centers” has bee
discussed by Morton J. Morton (1976) who has argued that
P-centers are ambiguous and could possibly be exerting an
influence on the production as well as the perception of words
However, there is substantial inter-subject variafibrin the
figure, the dashed circles show averagekfof each subject.
Apart from the two that are near zero and thus have have no
consistent phase relationship to the ticks, some subjéats p
the loudness peak before the tick, some almost on the tick, an
some place it after the tick.

V. CONCLUSIONS
In English, the beat of repetitive speech is marked by an

increase in the loudness relative to the immediate neighbor
hood. This neighborhood is approximately one syllable on
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Spectral Slope

Speech Signalo
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a

We alway s/ d o.

(Boersma, 1993; de Kram, 1993; Sluijter and van Heuven,
1996; Streefkerlet al,, 1999; Kochansket al,, [2005). Also,
it is well-behaved in regions of uncertain or no voicing,ikel
the measure used by Heldner (2001).

We use

o 25
o= Ztt s(t) (A9)

wheres(t) = cL™(t) + L' (t) and the sum over time is com-
puted over the entire data file containing the utterancep-Ty
ically, the data file contains about 20% silence, counting
pauses between repetitions and a few hundred milliseconds

15

_ ‘ ‘ —— at each end. We chose this form fbécause it relatively
Time (s) 1.8 19 20 21 2. jnsensitive to the amount of silence in the data file.) An
example ofS(t) is shown in Figure 10.

FIG. 10. Sample audio data along with the spectral sISfi¢, This
shows one repetition of “We always do.”

APPENDIX B: LIST OF PHRASES

APPENDIX A: DEFINITION OF SPECTRAL SLOPE MEASURE Exacily s0. Another time.
We always do. It surely is.
The spectral slope measure we use is based on a compari- Eozgfxerwv(\;':g Isuhn:e(r)sgzr:\jl\.,a
son of specific loudnesses at high and low frequencies. The Tr?e Iieya art : The %usiness K.ere
computation begins by filtering the speech into bands that Indeyed i r?ad ' | noticed that :
are 1 Erb (see Moore and Glasberg, 1983) wide, (Hrb Nothin mattérs Checker pla .ers
centers, between 50 and 6000 Hz. (We use the filterbank Williango or : Scarlet LeE[)te?/ '
recommended by Baumgarte (2002).) Then, we half-wave Goodnessprécious' Lightnin résses
rectify each filter output and take the cube root of the local Worldi wis%om ’ Bangkin sgsF,Jtems '
intensity to approximate the nonlinear response of the ear. Phos )rlwrescen'ce Nonegwk)llatever.
This yields a set of specific loudness measufgs), wherek phoresc : o :
indexes the frequency band. The center frequency okthe Goo_d begm_nmg_. Thl_s_|s funny.
band isf (K) Hz. Testing thg instriments Philip was conqyered
Next, we low-pass filter these with a frequency-dependent tg¥3§23 lgtr?r?wg%/t. ?\lpoa;;es rgr? %c;u;giltsi;ory.
time constant derived from Plomp and Bouman (1959) to Like vou Eu este.d Here are the bannegr.s
yield ¢(t). We approximate their time constants as Not t)o/ my kggwledg.e. Run for the cellar :
log(f /200) Not that it mattered. Talking of wandering.
T(f)=04- 0-27m» (A1) Wendy was scandalised. Going away.
9 Always ahead. Then | refuse.
Nothing at all. Open the door.

wheret(f) is in seconds.

We sum the result into two broad-band specific loudnesses, Maybe she had. Probably not.

Only a mouse. Say it again.

LH (t) = ka(t) wheref (k) > 1000 Hz (A2) Billy was there. Under the desk.
Carrots and greens. Shirley declared.
That ruined me. Freddy Observed.

and Tracy announced.
Lo <7
L-(t) = Zék(t) wheref (k) < 1000 Hz (A3) ENDNOTES

Finally, we combind_" andL" into a spectral slope mea-
sure by computing

1. As discussed in (Kochanski, 2006), it is not obvious
to what extent people have accurate conscious access
to the process of speech perception and understanding.

cLH (t) — LY (1) For instance, several papers have raised the possibil-
S)=—"7%—" (Ad) ity (Dyde and Milner, 2002; Haffenden and Goodale,
1998; Agliotiet al, [1995) that visual processing for
wherec = 2.8 is a constant chosen so that the averag&nf perception is substantially different than processing for
is approximately zero, and (defined below) is a factor to action. If so, reported perceptions could disagree on
normalize out the average loudness. This fornSoy has the the actions we take in response to the same stimuli. If

advantage that it is well-behaved in and near pauses, unlike
measures based on intensity ratios of two frequency bands

a similar effect occurs in speech, our reports of what
we hear might not reflect our conversational behavior.
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