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ABSTRACT

Although the pitch of the human voice is continuously variable, some linguists

contend that intonation in speech is restricted to a small, limited set of pat-

terns. We test this claim by asking subjects to mimic a block of 100 randomly

generated intonation contours and then to imitate themselves in several succes-

sive sessions. The produced f0 contours gradually converge towards a limited

set of distinct, previously recognized basic English intonation patterns. These

patterns are ‘attractors’ in the space of possible intonation English contours.

The convergence does not occur immediately. Seven of the ten participants

show continued convergence toward their attractors after the first iteration.

Subjects retain and use information beyond phonological contrasts, suggest-

ing that intonational phonology is not a complete description of their mental

representation of intonation.

PACS numbers: 43.70.Fq, 43.71.Bp, 43.70.Bk, 43.71.An
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I. INTRODUCTION

The pitch of the human voice is continuously variable. Nevertheless, phonologists often

assert that any language uses only a small set of different patterns to control intonation

(variation in pitch, whose primary acoustic correlate is fundamental frequency or f0). In-

tonation in English, for example, is said to behave this way (Cruttenden, 1997; Kingdon,

1958; O’Connor and Arnold, 1961). Similar claims have been made for numerous other lan-

guages. See Hirst and Di Cristo (1998) for discussions of intonation patterns in European

and non-European languages.

Listeners supposedly interpret and make linguistic sense of continuous pitch changes in

speech via such basic patterns (Brazil, 1985; Jun, 2005; Pierrehumbert and Hirschberg,

1990). In intonation languages, such as Dutch, German, or English, pitch variations seem to

help in signalling prosodic phrasing, different information structure packaging (Steedman,

2000; Vallduv́ı and Engdahl, 1996), or attitudinal and emotional information (Scherer, 1985).

The belief in a small set of basic intonation patterns is based primarily on a linguist’s or a

subject’s conscious classification of contours (Gussenhoven and Rietveld, 1997; Kohler, 1991;

Ladd and Morton, 1997). Experimental evidence on the validity of linguistic descriptions of

intonation is very limited.

One line of attempts to obtain such evidence has used the ‘categorical perception’

paradigm (Liberman et al., 1957). A set of speech stimuli is generated whose f0 contours

are spaced along a continuum between two supposedly basic prototypes. In an identification

task, participants classify each stimulus as belonging to one of the prototypes. In a discrim-

ination task, the observers indicate whether they hear a difference between paired stimuli

that are near neighbors on the continuum. The hallmark of ‘categorical perception’ is that
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discrimination can be predicted from identification. Qualitatively, all examples within a

category should be perceived as similar, making it difficult to discriminate pairwise between

them. In contrast, discrimination should be easy for two items that straddle the boundary

between categories, producing peak performance.

A maximum in the discrimination function was reported for early and medial peaks in

German intonation (Kohler, 1991) and for the perception of high and low boundary tones in

Dutch (Remijsen and van Heuven, 1999). However, discrimination within categories was bet-

ter than the identification data predicted. In another experiment, Ladd and Morton (1997)

tested the perception of peak height. Their listeners could classify the stimuli as normal

or unusual, but discrimination was not even maximal across the classification boundary. In

studies on lexical tone in Cantonese, the predictability of discrimination from identification

varied with the type of contrast under study (Francis et al., 2003). On the whole, these data

show no clear examples of categorical perception.

Obviously, identification relies on conscious classification of the speech stimuli. Further-

more, it shows nothing about whether the ends of the continuum represent basic psycholog-

ical structures or are simply transient categories imposed by the experiment. Color naming

provides a case in point. In a paper by Doll and Thomas (1967), subjects were trained

to label two different wavelengths and were then tested on intermediate wavelengths, to

generate an identification function. Training on different pairs of wavelengths then resulted

in different identification functions. Similar effects occur in speech perception (cf. Eisner and

McQueen, 2005 and references therein). Such easily shifted category boundaries apparently

cannot be deeply embedded in our perceptions. Indeed, boundaries can move so rapidly

(Ladefoged, 1989; Ladefoged and Broadbent, 1957) that they might not even be stable over

the duration of a categorical perception experiment. For these and other reasons, the concept
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of categorical perception and its attendant experimental paradigm have become increasingly

disfavored (see Schouten et al. (2003) and Plomp (2002, pp. 137–145)).

In a different approach, Pierrehumbert and Steele (1989) constructed a set of contours

that varied in the position of a peak in f0. They asked subjects to repeat each carrier

utterance and measured the positions of the resulting peaks. Although the paper lacks a

statistical analysis, the authors interpret the data as showing that the subjects produced

bimodal distributions of peak positions. The paper introduced a valuable method, although

it was limited in certain respects. Beyond the lack of statistics, one of the five subjects was

an author and was therefore not näıve.

These previous experimental efforts have left undefined the number and properties of

basic intonational patterns. Even their psychological reality can be doubted. We therefore

set out to obtain better behavioral evidence on whether basic intonational patterns affect the

perception and production of speech. To do this, we employ iterative mimicry. Mimicry is a

simple behavioral response to language. It appears early in children’s language development,

long before grammar and comprehension are fully established (Loeb and Allen, 1993; Meltzoff

and Decety, 2003; Snow, 1998). Results from mimicry therefore should provide a better

picture of a subject’s language processing than do conclusions based on introspection or

explicit and conscious classification.

Bartlett (1932) long ago exploited a version of iterative mimicry to study drawing, among

other things. His Method of Serial Reproduction required a subject to produce a drawing

after short exposure to an original. The reproduction was presented to another subject who

attempted a new reproduction. This between-subjects procedure was iterated some dozen

or so more times. Bartlett found that the successive reproductions were gradually simplified

or even transformed into something very different from the original drawing.
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Our procedure of iterative mimicry builds on this method but remains strictly within each

subject. It provides a substantially new approach to studying the way in which intonation

is processed. Our technique is related to those used by Pierrehumbert and Steele (1989) and

Repp and Williams (1987), but it extends their efforts in several ways. In our procedure,

a subject first mimics an initial set of English utterances with widely varied f0 contours.

In a second session, the subject then mimics his/her own first productions. Continuing in

two more sessions, he/she mimics his/her own productions from the immediately preceding

session. If basic intonational contours are part of the subject’s mental structures for English,

the contours in the subject’s productions should progressively reduce over sessions towards

a few, well distinguished forms.

Such well-distinguished contours can be idealised mathematically as ‘attractors,’ a con-

cept from the mathematics of iterated functions. A function f(x) is applied to a starting

value x0 and then successively to its own result, yielding a sequence of values x0, x1 = f(x0),

x2 = f(x1), . . . . A simple example of an attractor comes from the function f(x) = x2. Zero

is called a fixed point of this function, since f(0) = 0. (Generally, w is a fixed point of a

function g if g(w) = w.)

Consider values of the argument of f(x) in the region around zero, where |x0| < 1.

Applying f(x) to any value in that region yields a result that has a smaller absolute value

than the input value. Succeeding applications of the function produce still smaller values

that approach zero as the sequence continues. For the function x2, then, zero is a stable

fixed point. Nearby values will converge over iterations toward any stable fixed point. This

convergence is a key feature of an attractor. The points from which the sequence converges

form an attractor’s ‘basin of attraction’.

For iterative mimicry, x represents a description of an entire intonation contour as a

7



B. Braun, JASA

vector of f0 values for each moment in time. Then f(x) represents the transformation from

the sound entering the subject’s ears to the sound produced by the subject. If each x in

a subset of starting contours converges over successive imitations towards a fixed shape,

this would provide evidence for the existence of an attractor in intonation. That subset

of contours would lie in a basin of attraction. Different subsets of starting contours that

converged towards different fixed shapes would lie in different basins of attractions. The

attractors themselves would represent underlying mental structures.

Using iterative mimicry to search for underlying attractors has a crucial advantage over

the other experimental methods described thus far: it does not require any conscious classifi-

cation of intonation by either the subject or the experimenter. This experimental procedure

comes much closer than others to the actual use of language in conversation. We respond to

language, but rarely do we consciously and explicitly analyze the intonation we hear. Hence,

our method avoids the possibility that conscious reports on intonation may not correspond

to responses that speakers would make in a conversation.

II. PROCEDURES

A. General design

We designed the experiment in analogy with the iterated-function definition of attractors

given above. Figure 1 shows this design. Each subject serves in four experimental sessions.

In the first session, “Iteration 1”, the subject mimics an initial set of utterances Xinitial. The

f0 contours of these utterances are systematically varied by resynthesis. Male and female

subjects hear initial stimuli that are based on a male and a female voice, respectively. We

record the subject’s response to each Xinitial. We call this first set of responses x1. These
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responses become the stimuli X1 for the next session.

In that session, the subject mimics each utterance in X1, producing a second set of

responses x2. These responses in turn become the stimuli X2 for the next session. The

responses x3 from that session become the stimuli X3 for the final session, which is “Iter-

ation 4”. In that iteration, the subject mimics each utterance in X3, yielding the final set

of responses x4. Except for the initial stimuli Xinitial, a subject hears only his or her own

utterances from the preceding iteration.

During each iteration, the subject needs to remember the intonation pattern for only a

short time between stimulus and mimicry. A stimulus is presented to the subject who begins

to respond immediately when ready. The mean interval within a session between the end

of a stimulus and the beginning of the response to it was 130 ms with a standard deviation

of 55 ms. Subjects therefore typically started moving their articulators before a stimulus

ended. The median spacing between iterations (i.e., xk to Xk) was 5 days, with a minimum

spacing of 1 day. Additionally, we scrambled the order of presentation of stimuli between

iterations so that subjects would not be able to track an utterance from one iteration to the

next.

B. Participants

Participants were linguistically näıve speakers of Standard Southern British English, five

males and five females. All had normal hearing and were between 19 and 30 years old. They

received written instruction to imitate the speech and the melody of each sentence as closely

as possible. They were informed that the initial stimuli were synthesized but that their task

was not to imitate the voice quality of the stimuli. To ease any discomfort at hearing their

own voice in the self-mimicking sessions, subjects were told that they would hear processed
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FIG. 1. Scheme of the experiment. The numbers refer to the four experimental sessions, called

iterations. In Iteration 1, the subject mimics the initial synthesized stimuli Xinitial, producing

responses x1. In each later iteration, the subject mimics his or her own productions from the

preceding session. Each response serves as a stimulus in the next iteration.
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versions of their own speech. (See §II E for details of the processing.)

C. Materials

The target sentences were chosen to be mostly sonorant subject-verb-object constructions

with a total of seven syllables each. They were constructed so that in a neutral reading,

accents occur on the first and the sixth syllables. Nine candidate sentences were generated.

D. Initial Recording and Selection

We interspersed these nine candidates with fillers of various lengths and syntactic struc-

tures, in order to obtain starting utterances for resynthesis. One male and one female speaker

of Southern British English read the list, both with a rising (e.g., questioning) and falling

(i.e., statement) final intonation. The recordings were made in a sound-treated room and

digitized at 16 kHz with 16 bits/sample. The productions from the male and the female

speaker were processed separately to provide initial stimuli for the male and female subjects,

respectively. Having two versions of the recordings miminized the eventual size of the f0

shifts that we would later need to impose; resynthesis quality generally declines as f0 shifts

become larger.

The nine candidate sentences were PSOLA-resynthesized with the three basis intonation

contours A, E, and H of Grabe et al. (2003), see Figure 2. (Resynthesis of A and E was

based on the falling recordings, H on the rising recordings.) The basis contours were chosen

to be maximally distinct among normal English contours. The authors separately assessed

the quality and naturalness of the 54 resynthesized versions. Six sentences survived this

initial selection.
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Next, to avoid any possible bias toward either rising or falling patterns (Ryalls et al.,

1994), we constructed versions of these six sentences that were intermediate between the

rising and falling recordings in terms of duration and LPC coefficients (see Appendix).

One more sentence was eliminated because the resulting audio had an unnatural segmental

structure. This finally left the following five sentences for the main experiment, each with a

male and female version:

1. Anna will marry Marlon.

2. Alan rode on a lama.

3. Eleanor blamed our neighbour.

4. Melanie won a million.

5. Minnie will ring a lawyer.

1. Intonation Contours for Initial Stimuli: X(initial,k)

One hundred fifteen initial f0 contours were generated by taking linear combinations of the

basis contours shown in Figure 2. A combination was defined by cA ·a(τ)+cE ·e(τ)+cH ·h(τ),

where a(τ), e(τ) and h(τ) are the basis contours expressed as functions of normalized time τ

that ranges from 0 to 1. We used combinations of cA, cE, and cH such that cA +cE +cH = 1,

cA > −0.3, cE > −0.3, and cH > −0.3.

The 115 combinations of cA, cE, and cH were selected to avoid clusters. The selection

algorithm operated iteratively. At each step, it chose 100 candidate samples of (cA, cE, cH)

from a uniform distribution and accepted the candidate that was farthest from all previ-

ously accepted samples. (Farthest is defined via the Euclidean distance between the two
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FIG. 2. The three basis contours from which initial stimuli were constructed (Grabe et al., 2003).

The ordinate is in semitones, relative to mean f0; the abscissa is normalized time.
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(cA, cE, cH) vectors: ((cA − c′A)2 + (cE − c′E)2 + (cH − c′H)2)1/2.) This resulted in a set of

points that were more uniformly distributed than would result from independent random

sampling. To avoid priming the subjects with the basis contours, we excluded regions where

(cA, cE, cH) was within 0.1 of (1,0,0), (0,1,0), or (0,0,1). This process finally produced ini-

tial intonation contours that were generally intermediate between the basis contours (when

cA > 0, cE > 0, and cH > 0) but also included some mildly exaggerated versions of the basis

contours when cA < 0, cE < 0, or cH < 0.

2. Synthesizing the Initial Stimuli

Each initial intonation contour was superimposed on a segmentally intermediate tar-

get sentence from the male and the female speaker, using PSOLA resynthesis. Although

each subject heard the resynthesized male or female initial utterances with the same initial

contours, f0 was scaled up or down from those utterances to match the average f0 of the

participant’s own speech. For the 10 subjects, this ultimately produced 1150 synthetic

utterances.

E. Data Collection

Each experimental session used up to five successive blocks of stimuli:

• Block A: A practice block of 15 stimuli (generated per §II D 1). These synthetic stimuli

were the same on all iterations. Each experimental sentence was synthesized with three

distinct contours.

• Block B: Re-recordings of unusable productions detected after the end of the previous

iteration. We re-recorded when the subject spoke the wrong words or substantially
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hesitated in the midst of a sentence, when bursts of noise interfered (e.g., the subject

touched the microphone), or when occasional technical problems arose.

• Block C: A block to test reproducibility. In the first iteration, this was identical to

block A. In succeeding iterations, the stimuli in this block were always the productions

of Block C, Iteration 1. The productions were adjusted to a consistent amplitude, and

initial or final breath and lip-smack noises were removed before they were used as

stimuli.

• Block D: This was the main experimental block. The first iteration utilised 100 syn-

thesized stimuli. Each of the five finally selected sentences was resynthesized with 20

maximally separated contours to cover the space of possible contours. Each sentence

carried a different block of contours. In all suceeding iterations, the stimuli were the

productions of Block D from the previous iteration. The productions were adjusted to

a consistent amplitude, and initial or final breath and lip-smack noises were removed

before they were used as stimuli. We randomized the order of the stimuli between each

iteration so that the subjects could not keep track of the history of each stimulus.

• Block E: This block re-recorded blatant mistakes that the experimenter noticed while

responses to Block D were being recorded.

If a subject was dissatisfied with a production, one repeat was immediately available.

Eleven per cent of the utterances were re-recorded at once for this reason. Between blocks

B and E, an additional five per cent of the productions were re-recorded.

With 115 stimuli per session, 4 sessions, and 10 participants, the corpus contains 5200

responses in total. Of these, the 4000 utterances from blocks D (with some replacements

from by B and E) are the basis of the results presented below.
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F. Signal Processing for Mimicry Data

Signal processing of the mimicry productions involved three main steps: inspection

and modification of f0 tracks, weighting, and normalization. The processing generally fol-

lowed Kochanski et al. (2005). Before analysis, the f0 tracks obtained from get f0 (Talkin,

1995) were screened for gross errors. Tracks that had frequency shifts of one octave (plus

or minus 15 Hz) between successive points were inspected, as were tracks with points that

fell more than 7 semitones below the participant’s average f0. Of the 4600 utterances from

blocks C and D, 125 tracks required inspection. Where necessary, f0 was modified. In 87

utterances some region was raised by an octave. It was lowered by an octave in one. One

hundred seventeen productions had the marking of some region changed from voiced to

unvoiced or irregularly voiced. The marked regions contributed to an indicator of irregular

voicing I(t), used in Equation 1 below. The mean length of all modified or marked regions

was 35 ms, totalling less than 1% of the data.

1. Weighting the mimicry data

For most sonorant sounds, especially in stressed syllables, the perceived pitch of speech

correlates well with the output of algorithms that estimate fundamental frequency. Not

all our data, however, meet that criterion. In the interest of using plausible sentences,

we chose some that had incomplete sonority (e.g., after /d/ in “rode”, sentence 2, above).

Furthermore, some voiced sounds were not strongly periodic and may not have had a clear

pitch.

Consequently, not all the data are of equal value for specifying the pitch that the subject

heard and attempted to reproduce. A weight function is unavoidable, because pauses have
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no pitch and must therefore be excluded from further analysis.

We base the weight, W (t), on two local acoustic measures that seem important in de-

scribing prosody: loudness, L(t), and the degree of aperiodicity of the waveform, A(t). The

net result of W (t) is to focus the analyses on the peak of the syllable, paying less attention to

the margins. The choice of weight is partially motivated by the pitch tracking algorithm and

statistical considerations. Another factor is that low amplitude parts of speech are often

buried in normal environmental noise and thus have little or no perceptual importance.

(Substantial numbers of people speak in environments where the mean signal-to-noise ratio

for speech is only 9 dB (Kochanski et al., 2005).)

The weight of a datum is

W (t) = L2(t) · max(1 − A2(t), 0)2 · V (t) · I2(t) · (1 + 2τ), (1)

which is (1 + 2t/T ) times Wf0(t) from Kochanski et al. (2005). In Equation 1,

• L(t) is the loudness (following Stevens, 1971),

• A(t) is a measure of aperiodicity (ranging from 0 to approximately 1),

• V (t) is the binary voicing estimate from the pitch detector, and

• I(t) is a manual indicator of irregular voicing (its value is most often 1, but the value

occasionally ranges down to zero for regions with no clear pitch), and

• τ is the normalized time, defined below in §II F 2, which ranges from 0 to 1.

The last term in Equation 1, (1+2τ), partially compensates for the typical decrease in L(t)

as an utterance progresses. Without some compensation, W (t) would generally decline along

the sentence. However, in two-accent sentences such as we use, the second (nuclear) accent is
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believed to be perceptually and semantically at least as important as the first (Cruttenden,

1997). The last term in Equation 1 was chosen to provide approximate equality in W (t)

for the two accents. We have found that our results would not be substantially different if

the coefficient in the last term were 1 or 4. Also, within the context of Kochanski et al.

(2005), changing the weight function by raising it to the power 2 or 0.5 had minor effects.

Consequently, we do not expect that the results presented here are critically dependent on

the detailed definition of W (t).

2. Normalization

For each f0 track, we normalized the time axis to range from 0 to 1 by computing

τi,j = ti,j/Ti, where i indicates an utterance, j selects a datum in the utterance, Ti is the

duration of the ith utterance, and t and τ refer to real and normalized time, respectively.

We normalized f0 by dividing it by f̄ , the 10%-trimmed weighted average of f0(t) over all

that subject’s sentences from all iterations, and converting the quotient to semitones. This

gave a normalized fundamental frequency φ(τ) = 12 · log2(f0(t)/f̄).

III. RESULTS AND DISCUSSION

To check that the subjects’ productions were representative of English, a phonologist

(author BB) applied standard intonation labels (Beckman and Ayers, 1997) to a subset of

the data. The labelling and classification of the contours generally proved straightforward.

Ninety-six per cent of the first imitations resulted in a previously recognized English contour.

Furthermore, the contours tended to be stable. A contour received the same annotation

in all four iterations 65 per cent of the time; changes between iterations usually yielded

18



B. Braun, JASA

FIG. 3. Normalized f0 contours, φ(τ), for a typical subject, AD. In each panel, f0 measurements

are superposed from the 100 main experimental utterances. The time axis τ is normalized to the

length of the utterance and the frequency axis is semitones relative to the speaker’s mean f0. The

upper left panel shows f0 contours for the initial stimuli. The next three panels contain response

tracks for Iterations 1 (upper right), 2 (lower left), and 4 (lower right).
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another recognized English contour. Overall, only 15 per cent of the contours could not be

unambiguously classified.

Figure 3 shows the f0 contours of the 100 initial stimuli and of Iterations 1, 2, and 4 for

subject AD. The areas of the dots are proportional to the loudness of speech multiplied by

a measure of of periodicity (see §II F 1, Kochanski et al. (2005)).

Near the center of the utterances (e.g., 0.2 < τ < 0.6, where τ is the normalized time),

the spread is primarily due to the difference between basis contours E and the other two

(A and H). The spread at the tail (τ > 0.9) contrasts H vs. (A and E). In the very first

iteration, the distribution of f0 contours for AD already develops some structure beyond

that for the initial stimuli. Over the succeeding iterations, the broad distribution of f0 near

the centers of the utterances gradually splits into two branches.

Most of our subjects manifest clear splitting such as is seen for subject AD. (We show

data from subject AD because they are at the median for two measures of this splitting

derived below from Figure 5. AD’s final valley depth ranks 6th out of 10, and the increase

in valley depth between iterations 1 and 4 ranks 6th out of 10.)

While participants can reproduce the intermediate contours (e.g., the “Iteration 1” panel

in Figure 3, for −2 < φ(τ) < 0, 0.2 < τ < 0.6), those contours are unstable. They move

over successive iterations into either the upper or lower stable branch (e.g., “Iteration 4”

panels of Figure 3).

A. One branch or two? Modelling the distribution of central f0

The f0 tracks in the subjects’ productions apparently collapsed into two branches over

mimicry sessions. This collapse is consistent with the proposition that a subject’s mental

structures include certain intonation patterns as attractors. According to the mathematical

20



B. Braun, JASA

model, the branches should become arbitrarily narrow, but human variability places a lower

limit on the width of the branches. Statistical testing of the splitting of the f0 tracks in our

data therefore becomes necessary. To do this, we take a slice of data for each combination of

subject and iteration between τ = 0.375 and τ = 0.5. Inspection showed that the distribution

of such normalized f0 values has longer tails than would a unimodal model constructed from

a single Gaussian density or a bimodal model constructed from two Gaussians. We therefore

represent the histogram of log(f0) as a mixture of two of Student’s t probability densities,

one for each branch. This allows models that are somewhat heavier-tailed than Gaussian

mixtures. Figure 4 shows the histogram of log(f0) for Iteration 4 from subject BP (lines

with dots). It also displays the best-fitting mixture of t-densities, along with the width of

each density. The valley-depth measure is discussed below.

Through a statistical analysis, we compare how well one- and two-component models of

the distribution represent such data from each subject and each iteration. The analysis uses

a Markov-Chain Monte-Carlo approach based on Bayes Theorem. It produces samples from

the joint distribution of the parameters that define the mixture and calculates the likelihood

ratio (relative a posteriori probabilities) of the one- and two-density models for each subject.

1. Models for the probability density of f0

The one-density model for the probability density of f0 is

H1(φ; θ1) = t

(
φ − µ1

σ1

, η1

)
, (2)

where θ1 is short-hand for the three parameters (µ1, σ1, η1), and t is Student’s t-function.

The two-density model is

H2(φ; θ2) = r · t
(

φ − µ21

σ21

, η2

)
+ (1 − r) · t

(
φ − µ22

σ22

, η2

)
(3)
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FIG. 4. Fit of a two t-density mixture to the central section of Iteration 4, subject BP. The abscissa

is f0 in semitones relative to the speaker’s average; the ordinate gives probability. Line with dots

represents the histogram of the data to which the model was fitted. The smooth black curve is the

best-fitting model; the dashed curves show its two components. The vertical arrow indicates where

the valley depth is computed, to compare the density minimum to a density interpolated between

the peaks of the two components. The width of each component is also indicated.

22



B. Braun, JASA

where θ2 is short-hand for the five parameters (µ21, µ22, σ21, σ22, η2, r). In these equations,

µk sets the center of a component, σk specifies its width, and ηk is the degrees-of-freedom

parameter of the t-density. We are not fitting this density to data. Instead, we are using

it as a convenient way to represent a symmetric probability density that is heavy-tailed

compared to a Gaussian. Therefore, ηk is a free parameter of the model: it controls how

heavy the tails are. For the two-density distribution, r sets the relative probability masses

of the two components.

We constrain the parameters so that σk > 0, 0 < r < 1, and 2 < ηk < 20. (η ≥ 20 makes

the t-density indistinguishable from a Gaussian).We can safely constrain µ22 > µ21 so that

µ21 always represents the lower branch and µ22 represents the upper branch of f0, as in the

right-hand panels of Figure 3).

Under the assumption of the one-density model θ1, the probability of observing the data,

Φ = {φi,j} for j in the set of utterances and 0.375 < τi,j < 0.5, is

log(P1(Φ|θ1)) =
∑
Φ

log(H1(φi,j; θ1)) ·
Wi,j

W j

· ∆t

Tcorr

. (4)

For the two-density model θ2, it is

log(P2(Φ|θ2)) =
∑
Φ

log(H2(φi,j; θ2)) ·
Wi,j

W j

. · ∆t

Tcorr

. (5)

In these equations, W j is the average weight across an utterance, and ∆t/Tcorr is the ratio

of the interval over which f0 is measured, compared to the assumed correlation time of the

f0 measurements. We conservatively assumed Tcorr = 100 ms, so ∆t/Tcorr = 0.1. Effectively,

this means that we use only 10% of our data in computing the significance of the two-

component model. The actual correlation length of the f0 measurements obtained from

get f0 is hard to estimate precisely, due to the complexity of the algorithm. In strongly

voiced regions, however, get f0 often reflects changes in fundamental frequency that occur
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over 10-20 ms time scales. A suitable value for Tcorr therefore may well be substantially

smaller than our 100 ms assumption. Reducing Tcorr would make the two-component model

more significant relative to the one-component model.

2. Statistical evaluation of the models

We used Bayes’ Theorem and a Markov-chain Monte-Carlo algorithm (Geyer, 1992;

Metropolis et al., 1953) to generate samples from the distributions of P1(θ1|Φ) and P2(θ2|Φ).

These are the posterior joint probability densities of the parameters, given the observed

data. We assumed flat priors over the parameter ranges specified above.

To implement statistical testing, we computed the likelihood ratio of two classes of hy-

potheses, where each class consists of a set of related models:

1. the class of single-component distributions that are plausible fits to the data (specifi-

cally Equation 2 where θ1 selects the model within the class), and

2. the class of two-component distributions that are plausible fits to the observed data

(specifically Equation 3 where θ2 selects the model).

This is a straightforward application of Bayesian Model Averaging (Hoeting et al., 1999).

Assuming flat prior probabilities and no bias toward either model, the likelihood ratio is:

R =
< P1(θ1|Φ) >

< P2(θ2|Φ) >
=

< P1(Φ|θ1) >

< P2(Φ|θ2) >
, (6)

where the angle brackets, <>, denote an expectation over the corresponding probability

density, e.g.,

< P1(Φ|θ1) > =

∫
P1(Φ|θ1) · P1(θ1|Φ) · dθ1. (7)
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The expectation value can therefore be implemented as an average over samples generated

by the Markov-chain Monte-Carlo process, because the process picks samples from each

region of volume dθ1 with probability P1(θ1|Φ) · dθ1. Therefore,

< P1(Φ|θ1) > =
∑
θ1

P1(Φ|θ1)/
∑
θ1

1. (8)

The expectation value for < P2(Φ|θ1) > is computed similarly.

If the likelihood ratio R < 1, then the two-component model is a better representation of

the data. By the rules of hypothesis testing, however, we do not reject the single-component

model unless R falls below a confidence limit of 0.001. Our tests show that the two-density

model for Iterations 2 to 4 is statistically significant (with R actually less than 10−4) for all

but subject PC. On Iteration 4 for PC, R < 0.01 and the means of the components differ

by 2.2 semitones. The components, however, have widths of 1.7 semitones and 0.9 semi-

tones and therefore overlap seriously. Although PC’s distribution of f0 values may require

two components to represent it well, the components do not separate into clearly distinct

branches.

In summary, in almost all cases, two t-densities give a significantly better fit to the

observed distributions of f0 than does one. The best-fit t-densities typically have noticeably

but not dramatically longer tails than would Gaussians. We find η = 13 with an inter-subject

standard deviation of 5 in Equations 2 and 3.

B. Valley depth

Having two components is a necessary but not sufficient condition for establishing bi-

modality, as the t-densities of a two-component fit could overlap strongly. Their means

could even virtually coincide. To provide further evidence for bimodality, we compute a
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valley depth measure (Figure 4) from a fit of two mixed t-densities to a histogram of central

f0. The computation finds the minimum of the curve of H2(φ; θ2) between µ21 and µ22

and compares it to the value interpolated between the peaks. The minimum is obtained

by simple iterative searching; the interpolation is linear on log(H2) between H2(µ21; θ2) and

H2(µ22; θ2). The valley depth is the negative log of the density at the minimum, divided by

the interpolated density at the same point. Valley depth is zero or negative for a unimodal

density. Values greater than one typically imply two well-separated components and hence

two clusters.

The valley depth measure was obtained for each Monte Carlo sample of θ2 generated

from P2(θ2|Φ). Figure 5 shows the set of valley depths for each speaker plotted against

iteration number. The lines show the mean; standard deviations are shown for the first and

last iterations. The error bars are conservative. As stated previously, our computations

assumed that f0 measurements are correlated over a large 100 ms stretch because of the

dynamic programming algorithm in get f0. The correlation length in such strongly voiced

regions, however, is typically no larger than 20 ms. The error bars in the figure would shrink

in proportion to the square-root of the correlation length. They are perhaps about half as

large as plotted. The figure also shows fits to the f0 contours for the initial stimuli.

The mean valley depth starts at 0.16 for the stimuli. Averaged over all subjects, it

increases from 0.84 for Iteration 1 to 1.96 for Iteration 4. This is a highly significant increase

(z = 8.2, P < 10−6). Individually, nine subjects show some increase, and seven of them show

a significant increase (P < 0.05).

The exceptional subject PC (point-down filled triangles) gives a valley depth close to zero

in most of the Monte-Carlo samples. There is no valley between the two components fitted

to PC’s data, in line with the relatively high values of R found above for that subject.
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FIG. 5. Measure of bimodality in the distribution of central f0 for initial stimuli and for mimicry

responses as a function of iteration. Each curve gives results for one speaker. Ordinate is valley

depth (see Figure 4). Error bars are 1-σ from Monte-Carlo simulations; other error bars (not

shown) are of comparable size. (Subjects PC: H; EM: N; AD: •; BP: ◦; CB: �; CM: �.)
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Most subjects take more than one iteration to reach a stable state. Their f0 contours did

not collapse immediately into two branches. Therefore, between perception and production

on a given trial, most subjects remember some details of the stimulus beyond the shape

of a particular “stable attractor” contour. Intonational phonology with its choices among

a small set of discrete contours cannot be a complete description of the subject’s mental

representations of the contours they hear.

C. Variation in and around the Attractors

Subjects do not finally settle exactly on the attractor contours. The standard deviations

of the two branches shrink (see Figures 3, 4) to about 0.7 semitones for the lower branch

and 1.1 semitones for the upper. Frequency shifts smaller than this may often not be

linguistically useful because they cannot be reliably perceived, remembered, or reproduced.

These standard deviations are similar to RMS differences between repetitions of the same

utterance (Holm and Bailly, 2002, §3.1).

Figure 6 shows the variation in attractors across subjects. Generally, the upper branch

either rises early or starts high, stays high, and then drops. The lower branch either starts

high or has an early peak near τ = 0.1 and typically has a smaller peak around τ = 0.8.

Final rises are common but often they sound flat or even falling, perhaps due to the final

decline in loudness starting near τ = 0.92.

Subject CM (top of Figure 6) has no peaks in the lower branch (unlike AD in Figure 3).

No bimodality is visible in Iteration 1, but branches develop in Interations 2 or 3 (not shown)

and are clear by Iteration 4. Subject EM (middle) has a poorly-defined upper branch, with

a valley depth that is next-to-lowest in Figure 5. Even for this subject, however, a lower

branch forms by Iteration 1 and becomes narrower between Iterations 1 and 4. Subject
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FIG. 6. Variation between subjects. This figure shows normalized f0 contours, φ(τ), for subjects

CM, EM, and CB (top to bottom), plotted as per Figure 3. Data from Iterations 1 (left) and 4

(right); the initial stimuli are identical, as displayed in the upper-left panel of Figure 3.
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CB (bottom panel) shows two branches even in Iteration 1 which spread apart over the

iterations. CB has a well-defined peak early in the bottom branch, near τ = 0.15 and a

broad, ill-defined later peak.

The initial stimuli include both rising-tail and falling-tail f0 tracks, derived from the three

basis contours. Nonetheless, we do not clearly observe independent traces of the third basis

contour in the productions, nor do we see strong distinctions in the tails of the productions.

Only one subject (AD, shown in Figure 3) has three clear groups of contours. While several

subjects show late bimodality around τ = 0.95, correlations between the tails and the centers

of utterances complicate any interpretation.

In summary, the f0 contours are typically bimodal. They become more strongly bimodal

with every successive iteration. We see attractors for two of the three basis contours that

we expected; overall our data do not show an association of contour H (rising tail) with an

attractor.

D. Qualitative Analysis

In the phonologist’s (author BB) labelling three contours occurred particularly often: two

peaks (35%), a hat pattern (40%), and one with a final rise (17%). Recall that ninety-six

per cent of the labels applied to the first imitations resulted in a previously recognized

English contour and that the labels showed stability over iterations. The labelling therefore

indicates a collapse in the very first iteration towards some stable attractor, whereas the

acoustic analysis points to a gradual movement towards it. Linguistic categories could be

assigned to most of the contours, even if — acoustically — a contour is not yet close to a

stable attractor but is within its basin of attraction. This could be interpreted as a “magnet

effect” for English intonation, analogous to Kuhl (1991) and Guenther and Gjaja (1996).
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One interpretation of this result is that the attraction happens at the perceptual level

rather than at the level of motor control. If so, then the phonologist perceived the speech by

way of a mapping that is presumably similar to the subject’s. The phonologist’s perception

of a contour from Iteration 1 would then have undergone two mappings: one imposed by

the subject on an initial stimulus and one imposed by the phonologist on the subject’s

response. The phonologist’s perception would then effectively be one iteration further along

than the acoustic analysis. Her perceived contours therefore would be closer to the (discrete)

attractors.

Our findings are compatible with the results of Ladd and Morton (1997). They reported

that subjects discriminate between numerous contours that (for instance) signal presence

of emphasis but that subjects also readily assign contours to either an “emphasis” or “no

emphasis” category. The corresponding feature of our results is the preservation of some of

the difference information, as evidenced by the gradual collapse to the attractor.

One speculative way to explain the ease of conscious classification, the slow collapse of

the acoustic properties toward attractors, and the discrimination of contours within cate-

gories is to assume that a heard f0 contour is internally represented as an attractor plus a

partially-remembered difference between that attractor and the presentation. The phonolo-

gist may then suppress the difference information when classifying contours, retaining only

the category information. We recognize, however, that there are other possible explanations

of the three effects enumerated above.

IV. CONCLUSIONS.

Although subjects can hear and imitate randomly generated contours that are not nor-

mally found in English, over several iterations their productions converge onto a limited
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set of distinct contours. These function mathematically as attractors and correspond to

some (but not necessarily all) common English intonation contours. The results of itera-

tive mimicry provide objective support for the existence of basic intonation patterns that

act as attractors. Plausibly, the attractors are either a description of clusters of episodic

traces/exemplars (Goldinger, 1998), or are a soft targets along the lines of (e.g., Kochanski

et al., 2003) that represent the position of the cluster center but allow some variability around

it. Our results are not consistent with the hypothesis that subjects have available only a

discrete phonological description of the intonation. Subjects actually perceive, remember

and use acoustic detail above and beyond what intonational phonology normally represents.

Our attractor contours have a parallel in the production and perception of vowels. In

speech production, vowels are highly variable. Nevertheless, infants extract the vowels of

their native language, and the adult vowel space contains regions of substantial size where a

given vowel is heard reliably. The Perceptual Magnet Theory of Phonetic Learning (Guen-

ther and Gjaja, 1996; Kuhl, 1991) shows how these local vowel regions emerge: a set of

magnets acts as prototypes and warps the continuously variable vowel space around each of

them.

While there are similarities with vowel magnets, intonation contours are dramatically

extended in time. Vowels can be identified from brief bursts of sound (20–60 ms), while the

attractors seen here are global properties of an entire utterance (about 1 s). Consequently,

the mechanism that recognizes and processes these extended attractors may be different

from the mechanism that handles vowels.

Stable attractors in the mapping between produced intonation and heard intonation have

implications for language learning and development. To the extent that mimicry is involved

in the normal use of language, the distribution of intonation contours that people hear should
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have a high density of examples near each attractor. Notably, children should be exposed

to this distribution of contours. If the attractor contours in the children’s mappings are

based upon especially commonly heard exemplars, this could provide the mechanism for the

stable transmission of the intonational aspects of language from one generation to the next

in analogy to Maye et al. (2001); Saffran et al. (1996).
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APPENDIX A: SYNTHESIS PROCEDURES

An LPC analysis was made of each utterances from the original male speaker and fe-

male speaker, using the Entropics program refcof). Each analysis yielded 17 reflection

coefficients; three voice source parameters were also obtained from get f0.

For each of the candidate utterances, the parameters for the versions with falling and

rising intonation were matched by dynamic time warping. This algorithm finds a monotonic

mapping between the time axis of one utterance and the time axis of another that minimizes

the mean magnitude of the vector difference between two sets of parameters. This yielded a

time series of the 20 speech parameters that was half-way between that of the two starting

utterances, both in terms of segment durations and of segmental properties like formant

frequencies. Each of the candidate sentences was then synthesized from the intermediate
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parameters.
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