[frames] | no frames]

# Module ftest

source code

Functions

 fprob(dfnum, dfden, F) Returns the (1-tailed) significance level (p-value) of an F statistic given the degrees of freedom for the numerator (dfR-dfF) and the degrees of freedom for the denominator (dfF). source code

 betai(a, b, x) Returns the incomplete beta function: source code

 betacf(a, b, x) This function evaluates the continued fraction form of the incomplete Beta function, betai. source code
float
 gammln(xx) Returns the gamma function of xx. source code

 agammln(xx) Returns the gamma function of xx. source code
 Variables __package__ = `'gmisclib'`

Imports: math, N

 Function Details

### fprob(dfnum, dfden, F)

source code

Returns the (1-tailed) significance level (p-value) of an F statistic given the degrees of freedom for the numerator (dfR-dfF) and the degrees of freedom for the denominator (dfF).

Usage: lfprob(dfnum, dfden, F) where usually dfnum=dfbn, dfden=dfwn

### betai(a, b, x)

source code

Returns the incomplete beta function:

```
```

I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a. The continued fraction formulation is implemented here, using the betacf function. (Adapted from: Numerical Recipies in C.)

Usage: lbetai(a,b,x)

### betacf(a, b, x)

source code

This function evaluates the continued fraction form of the incomplete Beta function, betai. (Adapted from: Numerical Recipies in C.)

Usage: lbetacf(a,b,x)

### gammln(xx)

source code

Returns the gamma function of xx. Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt. (Adapted from: Numerical Recipies in C.)

Parameters:
• `xx` - float
Returns: float

### agammln(xx)

source code

Returns the gamma function of xx. ```Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt```. Adapted from: Numerical Recipies in C. Can handle multiple dims ... but probably doesn't normally have to.

Usage: agammln(xx)

 Generated by Epydoc 3.0.1 on Thu Sep 22 04:25:02 2011 http://epydoc.sourceforge.net